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ABSTRACT 

A model is developed which represents the behavior of 
multiprogrammed computer systems in terras of a network of 
interdependent queues.  This model, which is known as the 
central server model of multiprogramming, is first analyzed 
mathematically and then applied to three problems in 
operating system design.  These are: the optimal choice of 
buffer size for tape-like devices; the optimal allocation of 
processing requests among a set of functionally equivalent 
peripheral processors such as disks and drums; the optimal 
selection of the degree of multiprogramming In demand paging 
systems. 

A series of computational algorithms are developed to 
supplement the analytic work.  These algorithms can be used 
to obtain the marginal distributions and expected queue 
lengths for a large class of queueing network models. 
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SYNOPSIS 

The major portion of this thesis is devoted to the 

development, analysis and application of the central server 

model of multiprogramming.  This model represents the overall 

behavior of large scale multiprogramming systems in terms of 

a network of queues.  Each processing element and active pro- 

gram in the system being modeled is explicitly represented. 

In addition, the effect on overall system performance of 

random variability in individual program behavior is implic- 

itly taken Into account. 

The mathematical treatment of the central server model 

begins with a derivation of the steady state distribution. 

The properties of this distribution are then examined in a 

series of informal theorems and corollaries.  Following this 

a number of highly efficient computational algorithms are 

developed for numerically evaluating the steady state distri- 

bution In specific Instances.  These algorithms, which are 

applicable to a wide class of queueing networks, make it 

possible to easily carry out computations which would other- 

wise be near or in some cases even beyond the limits of 

current technology.  The value of these algorithms thus ex- 

tends well beyond the context of the thesis Itself. 

In addition to these analytic and computational results, 

the central server model is also applied to three specific 

problems in computer systems analysis.  These problems 
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involve the optimal specification of buffer size for tape- 

like devices, the optimal allocation of processing requests 

among a set of functionally equivalent peripheral processors 

such as disks and drums, and the optimal allocation of main 

memory in systems employing demand paging. 

All three problems generated unanticipated results.  In 

the first case it was discovered that, with the initial over- 

head per transfer held constant, optimal buffer size decreases 

as the transfer rate of the associated peripheral processor 

Increases.  Analysis of the second problem revealed that 

optimal performance is attained when the fastest processor 

is receiving more than its proportional share of processing 

requests and is in effect creating a system bottleneck. 

Finally it was shown in the third problem that in certain 

cases it is more important to have efficient page replacement 

algorithms in systems with fast page transfer processors 

than it is in systems with slow page transfer processors. 

The contents of each chapter of this thesis may be 

briefly summarized as follows: 

Chapter 1 presents a discussion of the merits of queueing 

network models and a guide to the remainder of the thesis. 

Chapter 2 introduces some basic queueing theoretic notions 

and then reviews a total of fifty-five papers concerned 

with the application of queueing theory to computer systems 

analysis. 
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Chapter 3 briefly traces the development of analytic methods 

and models in the field of queueing network research. 

Chapter 4- provides the basic motivation for the central ser- 

ver model and also examines some of the model's elementary 

properties. 

Chapter 5 presents a derivation of the steady state distribu- 

tion for the central server model and an examination of the 

analytic and computational aspects of this distribution. 

Chapter 6 explores the applications of the central server 

model to problems of buffer size determination, peripheral 

processor utilization and page traffic balancing. 

Chapter 7 develops a number of extensions to the basic 

central server model which make it possible to represent 

more general classes of systems. 

Chapter 8 examines the relationship between this thesis and 

previous research.  In addition a number of problems are 

presented for future consideration. 

Appendix A discusses the nature of the exponential distribu- 

tion with emphasis on the so-called 'memoryless* property. 

Appendix B provides a detailed explanation of the powerful 

but little known solution technique which was used in Chapter 

5 to obtain the steady state distribution for the central 

server model. 
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CHAPTER 1: IKTiiODuCTION 

THE NEED FOR QUEliEING NETWORK MODELS 

Large scale multiprogramming systems are typically com- 

posed of a number of individual processing elements such as 

computational processors, device controllers, data channels 

and so forth.  These processing elements normally operate in 

parallel with one another subject to constraints generated 

by the programs which run on the system.  That is, even 

though the processing elements which make up a multipro- 

gramming system may be capable of fully parallel operation, 

the degree of parallelism which the system actually attains 

is always limited by the sequential nature of the processing 

requests that individual programs generate.  Thus any model 

of a multiprogramming system must Incorporate both parallel 

processing capabilities and sequential processing constraints, 

Random variability also has a significant effect on the 

performance of multiprogramming systems.  Essentially, this 

factor creates the possibility of queueing delays even though 

the average Interval between arrivals at a system processor 

may be greater than the average service time per processing 

request.  queueing delays created by random variability work 

in conjunction with sequential processing constraints to 

further reduce the degree of parallelism In multiprogramming 

systems.  The effect of this factor may be quite significant. 



For example. In the case in which all active programs have 

requests pending for the sa^e processing element at the same 

time, parallelism may entirely disappear.  Hence any realis- 

tic multiprogramming model must include random variability 

along with parallel processing capabilities and sequential 

processing constraints. 

One of the primary purposes of this thesis Is to demon- 

strate that all three of these factors can be represented 

quite naturally within the framework of a queueing network 

model.  In such a model each server in the network corresponds 

to an individual processing element, the path that a cus- 

tomer follows while moving through the network corresponds 

to the sequence of processing requests generated by a partic- 

ular program, and the random variability in service times 

and customer movement corresponds to the random variability 

in the actual system.  In addition the number of customers 

In the network at any time clearly corresponds to the degree 

of multiprogramming of the system being represented. 

Queueing network models may be addressed to a number of 

problems in computer systems analysis.  For example. It is 

possible to study the effects of various modifications In 

system hardware by utilizing the correspondence between 

actual processor speed and network service time or the corre- 

spondence between main memory size and number of customers 

in the network.  In a somewhat different context, the corre- 

spondence between program behavior and the paths that cus- 



tomers follow as they move through the network can be used to 

study problems such as the optimization of program structure 

with respect to system hardware.  Finally, it is possible to 

study more complex problems such as the optimal allocation of 

main memory in systems with demand paging.  Problems of this 

type involve the interaction of several system components 

and cannot be adequately treated by simpler models which take 

only one processing element Into account. 

Despite the obvious advantages of queuelng network 

models, very few analyses of such models have appeared in 

the literature.  This is no doubt related to the mathematical 

difficulties associated with the general analytic treatment 

of models of this type.  However, in many specific cases of 

Interest - including those considered in this thesis - it is 

possible to significantly reduce the mathematical complexity 

of the problem by applying a powerful solution technique 

which was originally developed by Jackson (48) in 1963 and 

then independently discovered by Gordon and K'ewell (41) 

shortly thereafter.  Since this solution technique is not 

widely known within the field of computer systems analysis, 

its most significant aspects have been reproduced in Appendix 

B.  It is hoped that the increased availability of this tech- 

nique together with the examples and supplementary numerical 

algorithms developed in this thesis will generate additional 

interest in this area and will ultimately lead to a series 

of highly useful and revealing queueing network models. 



ORGANIZATIONAL REMARKS 

A brief sugary of the contents of each chapter of this 

thesis is provided in the Synopsis.  It should be apparent 

from this summary that Chapters 4, 5 and 6 present the bulk 

of the new material in the thesis.  These chapters are en- 

tirely self-contained and should be readily understandable 

to anyone familiar with queueing theory and operating syste-n 

fundamentals. 

Readers more interested in practical applications may 

wish to restrict their attention to the section of Chapter 4 

which deals with specification of the model, the section of 

Chapter 5 which deals with system performance, and the three 

examples in Chapter 6.  The extensions discussed in Chapter 7 

and the suggestions for further research presented in Chap- 

ter 8 should also be of interest to this group. 

The more mathematically inclined readers will probably 

wish to read all of Chapters 4 and 5«  However, the only 

application of real mathematical interest in Chapter 6 is 

the one dealing with peripheral processor utilization.  In 

addition, any mathematically inclined reader not already 

familiar with the work of Jackson (4-8) and Gordon and Newell 

(41) should find Appendix B extremely valuable.  The work 

of Jackson and Gordon and Jewell is also discussed in more 

qualitative terms in Chapter J. 



The survey presented in Chapter 2 is self-contained and 

should provide a helpful introduction to students and other 

individuals entering this field of research.  In addition. 

Chapters 3 and 8 contain more specialized surveys.  All three 

of these chapters contain discussions of unsolved and poten- 

tially significant research problems. 



CHAPTER 2: SURVEY OF THE APPLICATIONS OF 
QUEUEING THEORY TO COMPUTERS 

ESSENTIALS OF QUEUEING THEORY 

Queueing theory may be thought of as a collection of 

analytic techniques and mathematical results all related to 

the analysis of a particular abstract process.  Essentially 

this process is one in which customers arrive at some service 

facility, present that facility with requests for service, 

and then leave the facility after their individual requests 

have been satisfied.  In this general setting queueing theory 

deals with such questions as the number of customers at the 

facility at any time, the total amount of time required to 

process individual customers through the facility, and the 

nature of the periods during which the facility is continu- 

ously busy serving customers. 

Random variability is one of the essential distinguish- 

ing features of all queueing systems.  Basically, there are 

two ways such variability can enter: either in the time 

Intervals between the arrival of successive customers, or In 

the amount of service that individual customers request. 

In most queueing systems both these factors are assumed to 

be non-constant random variables.  However, there are some 

cases of Interest in which one of these factors is constant. 

Systems in which both factors are constant or cycle deter- 

mlnistically through a given set of values are not tradi- 



tionally regarded as falling within the realm of queueing 

theory since a different set of mathematical techniques is 

required for their analysis. 

In the standard terminology of queueing theory, the 

length of the Intervals between the arrival of successive 

customers is determined by the arrival process and the amount 

of service that each customer requests is determined by the 

service time distribution.  If the inter-arrival intervals 

are independent of each other and exponentially distributed 

(see Appendix A), the arrival process is known as a Polsson 

process.  This process is of fundamental Importance in queue- 

ing theory because of its mathematical simplicity and its 

reasonably close correspondence to many physical situations. 

If the service time distribution is also exponential, further 

simplifications are introduced, but It is not always neces- 

sary to make this additional assumption in order to obtain 

significant results. 

A queueing system is characterized by specifying an 

arrival process, a service time distribution, and a third 

component known as a service discipline. This third com- 

ponent specifies the manner In which service is dispensed to 

customers who are present at the service facility.  For 

example, customers may be served on a first come first served 

basis, or in accordance with an externally assigned set of 

priorities, or on a rotating (i.e., round robin) basis. 

A number of service disciplines which are important in 



the analysis of computer systems will be discussed more 

thoroughly in later sections of this chapter. 

Once a queueing system has been specified by identify- 

ing its three primary components, the analysis of the system 

can begin.  As already mentioned, the questions of Interest 

typically concern the number of customers at the facility 

at any given time, the total amount of time necessary to 

process particular customers through the system, and the 

length of the periods during which the service facility is 

continuously busy serving customers. 

Because random factors operate in all queueing systems, 

the questions of interest can only be answered in terms of 

random variables or expected values of random variables.  As 

an example of this type of solution, suppose that an initial 

reference point is established and designated as time zero, 

and let time t denote the point in time that is t seconds 

after time zero.  Assuming that the number of customers in 

the system at time zero is known and that the arrival proc- 

ess, the service time distribution and the service disci- 

pline are all specified, it is then conceptually possible 

to calculate P (t)  -  the probability that the number of 

customers in the system at time t is equal to n -  for 

each value of n (i.e., for n=0,l,2, ... ). 

In most queueing systems of interest the value of Pn(t) 

tends to stabilize after an Initial period of fluctuation. 



That is, the probability distribution characterizing the 

number of customers in the system eventually becomes invari- 

ant with respect to time.  Systems which stabilize in this 

manner are said to become stationary, and the stable distri- 

butions which are eventually attained are known as steady 

state, equilibrium or stationary distributions. 

In ergodlc systems the final steady state distribution 

is Independent of the state the system starts In at time 

zero.  Thus, a steady state distribution can be used to 

characterize an ergodic queuelng system when all that is 

known Is the arrival process, the service time distribution, 

the service discipline, and the fact that the system has 

been in operation for a relatively long period of time. 

All the research papers to be discussed in this chapter 

and the next are directed towards obtaining steady state 

solutions for ergodic queuelng systems.  However, It should 

be noted that it is sometimes possible to obtain time depen- 

dent solutions which, in effect, describe the behavior of 

systems as they progress from some Initial state to the 

equilibrium state.  Because of their mathematical complexity 

and specialized nature, the solutions obtained for the time 

dependent case have never been directly applied to the analy- 

sis of computer systems.  Takacs (78) presents a comprehen- 

sive account of the known results in this area. 

Before closing this section it would be worthwhile to 



mention a few modifications of the basic queueing process 

which are of interest in certain situations.  The first of 

these concerns the number of servers which make up the 

service facility.  The assumption here is that each server 

is capable of providing service to only one customer at a 

time.  Thus, if there are N customers present at a service 

facility made up of S servers and N is greater than S, then 

S customers will be receiving service and N-S customers will 

be waiting.  If N is less than or equal to S, all N customers 

will be receiving service and no customers will be waiting. 

Most applications of queueing theory to computers assume S is 

equal to one, but there are examples such as multiprocessing 

systems for which some other value of S would be appropriate. 

It is important to distinguish the case of multiple 

servers within a single service facility from the case of 

queueing networks.  In queueing networks there are a number 

of different service facilities organized so that customers 

leaving one may proceed to another.  Thus, separate queues 

build up at each service facility in the network.  Network 

parameters include the number of servers present at each 

facility and the probability that a customer leaving a par- 

ticular facility will proceed to another specified facility. 

A number of papers dealing with the theory of queueing net- 

works are discussed in Chapter 3« 

Now that the fundamental aspects of queueing theory 

have been introduced, it is possible to examine some of the 

10 



applications of this branch of mathematics to computer sys- 

tems analysis.  Each of the remaining sections of this chap- 

ter will focus on one particular area of application. 
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QUANTUM CONTROLLED SERVICE DISCIPLINES 

In Interactive time-sharing systems  it is usually con- 

sidered undesirable to keep a short Job waiting simply 

because a substantially longer Job has entered the system 

sometime before it.  As a result such systems do not normally 

process Jobs strictly on a first come first served (FCFS) 

basis.  Instead they employ scheduling algorithms which 

attempt to insure that relatively short jobs do not have to 

wait in the system for excessively long periods of time. 

Scheduling algorithms which provide short Jobs with this 

type of preferential treatment have been the subject of 

extensive analysis over the past few years.  Since most of 

the algorithms studied belong to the class of quantum con- 

trolled service disciplines, it is useful to consider the 

structure of this class as a whole before examining the 

behavior of specific algorithms. 

The essential feature which characterizes quantum con- 

trolled service disciplines is that each Job is permitted to 

run on the system (i.e., the CPU) for a certain period of 

time known as a quantum.  If a Job terminates before its 

quantum has expired, it leaves the system immediately. 

Otherwise, it returns to the queue of waiting Jobs when 

its quantum expires. In either case, another Job is then 

immediately selected from the queue of waiting Jobs and 

granted the next quantum of CPU processing.  The algorithm 

12 



continues to operate in this manner so long as there are any 

jobs In the system waiting- for service. 

An important feature of quantum controlled service dis- 

ciplines, in addition to the relative ease with which they 

can be implemented, is the fact that they can provide prefer- 

ential treatment to short jobs evei though they presume no 

a priori knowledge of the amount of processing that incoming 

jobs require.  As will be demonstrated in the next section, 

it is theoretically possible to devise service disciplines 

which are superior to the quantum controlled type if such 

a priori Information is available.  However, because such 

information is difficult and oftentimes impossible to reli- 

ably obtain, designers of Interactive time-sharing systems 

will probably never entirely discard service disciplines of 

the quantum controlled type. 

The mathematical analysis of quantum controlled service 

disciplines has generated a surprisingly large number of 

publications.  In order to categorize these publications and 

present them in a relatively coherent manner, the following 

strategy has been adopted.  First, a set of five components 

which are present in all queueing theoretic models of quantum 

controlled service disciplines will be identified.  Each 

component will be considered individually, and all the sub- 

categories which have been studied in the literature will 

be discussed.  Then each paper will be classified by specify- 

ing the particular sub-category of each component that was 

13 



used to construct the model examined in the paper.  The final 

outcome of this procedure is presented in Table 2-1 (pp. 32- 

33)  f°r a total of twenty-nine papers which were published 

in the period 1964-1970. 

The five components used to make this classification 

are the scheduling algorithm, the quantum type, the service 

time distribution, the arrival process and the overhead 

assumption.  These components along with their associated 

sub-categories are represented schematically in Figure 2-3 

(pp. 30-3D-  The selection of these components was motivated 

by earlier survey papers prepared by Coffman (18), Estrin 

and Klelnrock (31), and McKinney (6l), and so the material 

presented here may be regarded as a natural extension of 

this earlier work. 

Scheduling Algorithms 

As indicated in Figure 2-3, only two components are 

required  to  specify a quantum controlled service disci- 

pline: the scheduling algorithm, which determines the order 

in which jobs are selected for service at the end of each 

quantum, and the quantum type, which determines the amount 

of processing time allocated to a job once it has been 

selected for a quantum of service. 

Essentially only two classes of scheduling algorithms 

have been considered in the literature, round robin (RH) and 

foreground background (FB).  Under the RR discipline  jobs 

entering the system form a single queue in order of arrival. 

14 



Each time a new job is to be selected for a quantum of pro- 

cessing, it is taken from the head of the queue.  If a Job 

requires additional processing at the end of a quantum, it 

is placed at the tail of the queue as if it were a new Job. 

Thus, before a Job can receive an additional quantum, each 

Job which was present in the system at the end of its pre- 

vious quantum must first receive a quantum of its own.  The 

operation of such a scheduling algorithm is depicted sche- 

matically in Figure 2-1. 

Under the FB discipline, jobs entering the system also 

form a single queue in order of arrival.  This queue, which 

is known as the foreground queue, is served on a FCFS basis 

with each Job being granted one quantum of processing.  If 

a job requires additional processing at the end of its quan- 

tum, it does not return to the tail of the foreground queue 

as in the HR algorithm but instead returns to the tall of the 

first background queue.  After a wait in the first background 

queue, a Job receives its second quantum of processing and 

then proceeds to the third background queue, then the fourth, 

and so on until its processing requirement is finally satis- 

fied. 

An important feature of FB algorithms is that each time 

a new job is to be selected for a quantum of processing, it 

is taken from the head of the highest priority non-empty 

queue.  In this context the foreground queue has highest 

priority, the first background queue has second highest 

15 
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The Foreground Background (FB) Scheduling Algorithm 
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priority, and In general the n— background queue has n+1— 

highest priority.  Within the foreground level and each back- 

ground level  jobs are queued In the order in which they 

arrive at that particular level and served on a FCFS basis. 

The entire process is illustrated in Figure 2-2. 

To complete the description of the F3 algorithm it Is 

necessary to discuss the disposition of jobs which complete 

a quantum of service on the lowest priority background level 

but still require additional processing.  One fairly common 

procedure is to continue to give such jobs additional quanta 

until they finally run to completion.  If in the meantime a 

new Job enters the system, that job will begin to receive 

service as soon as the job being served comes to the end of 

its next quantum since the new Job will be In a higher pri- 

ority queue.  This particular method of managing the 

lowest priority background queue is known as the quantum 

controlled first come first served discipline. 

A second alternative is to operate the lowest priority 

background queue under a RR discipline so that a job com- 

pleting a quantum of service immediately cycles back to the 

tall of that queue.  It is also possible to let Jobs in the 

lowest priority background queue simply run to completion 

without any possibility of preemption.  This third alterna- 

tive may be thought of as a special case of either of the 

first two in which the quantum length of the lowest priority 

queue has become infinite. 
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Still another way to deal with this problem is to postu- 

late the existence of an infinite number of background levels. 

Once this is done, the problem disappears entirely since 

there no longer is a lowest priority queue.  While this 

solution in no way affects the treatment given to short and 

medium length jobs, it elegantly removes the singularity 

associated with the lowest priority queue and thus gives the 

algorithm a more uniform structure. 

For notational purposes, FB algorithms incorporating 

an infinite number of background levels will be identified 

as FB  algorithms while FB algorithms Incorporating a finite 

number of background levels will be identified as FBN algo- 

rithms.  A specific example with, for example, a total of 

three levels (two background and one foreground) will be 

identified as an FB- algorithm.  In order to keep the notation 

simple, no attempt will be made to specify the way in which 

the lowest priority queue is managed in the finite case. 

There are a few minor variants of the basic RR and FB 

scheduling algortlhms which have received some attention in 

the literature. These algorithms will be identified for 

purposes of this discussion as follows: 

RR/D Round Robin with Delayed Entry - Jobs which arrive 

at the system do not enter the round robin cycle until 

after some period of time has elapsed.  This algorithm 

might be useful in modeling a system in which the 

arrival of new Jobs Is detected by the periodic polling 
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of a set of flags.  Kleinrock (56) applies the label 

"selfish round robin" (SRR) to a particular subcase of 

this class, while Krishnamoorthi and Wood (60) refer 

to another subcase as a schedule queue discipline. 

FB/P Foreground Background with Priority Entry - This algo- 

rithm is identical to the FB algorithm except that 

Jobs may enter directly at any of the background level 

queues as well as at the foreground level.  The highest 

priority class jobs enter at the foreground level and 

Jobs of progressively lower priority enter at progres- 

sively higher background levels. 

FB/PP Foreground Background with Priority Entry and Priority 

Service - In this modification of the FB/P algorithm, 

priority class not only determines a Job's initial 

point of entry into the system but also determines the 

intra-level service order.  That is, within each level, 

higher priority Jobs are served first and Jobs of the 

same priority are served on a FCFS basis. 

FB/PO Foreground Background with Priority Entry and Oldest 

Job First Service - In this modification of the FB/P 

algorithm. Jobs within a particular level are served 

in the order of their initial arrival at the system 

(I.e., oldest Job first) rather than in the order of 

their arrival at that level (i.e., FCFS). 

FB/NQ Foreground Background with Non-Standard Queue Selection 

- In standard FB algorithms, the foreground queue has 
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highest priority and the n— level background queue 

s t has n+1— highest priority.  FB/NQ algorithms postu- 

late some other priority ordering.  However, Jobs- 

still enter at the foreground level and work their 

way up through successive background levels. 

Quantum Types 

As stated previously, in order to specify a quantum 

controlled service discipline it is necessary to Identify 

both the scheduling algorithm and the quantum type.  When 

classifying quantum types it is convenient to first make 

the distinction between deterministic quanta and random 

quanta.  In the deterministic case the length of a quantum 

is completely determined once a set of associated values 

known as quantum defining factors is specified.  In the 

random case the quantum defining factors serve only to 

determine the probability distribution characterizing the 

length of the associated quantum; quantum length itself is 

thus a random variable rather than a constant in this case. 

If a Job terminates before its final quantum expires, 

it leaves the system immediately and a new Job Is then allo- 

cated the next quantum of processing.  Thus, in systems 

employing deterministic quanta, it is not necessarily true 

that all quanta corresponding to a given set of quantum 

defining factors have the same actual length.  However, all 

quanta corresponding to a given set of quantum defining 
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factors do have the same maximum length. 

In the case of random quanta, the random variable asso- 

ciated with a particular set of quantum defining factors may 

correspond to either the maximum quantum length or the actual 

quantum length.  This additional degree of freedom results 

from the fact that since quantum size is already a random 

variable its distribution function can be chosen to reflect 

the fact that jobs terminate at arbitrary points in time. 

In the quantum identification scheme to be used in this 

discussion, the initial letter will indicate whether the 

quantum is deterministic (D) or random (R), and the follow- 

ing letters will indicate the quantum defining factors. 

Using this scheme, seven different quantum types which have 

appeared in the literature may be identified as follows: 

DI   Identical length quanta are allocated to all jobs. 

HI   The Identical distribution characterizes quantum 

length for all jobs. 

DP   Different classes of Jobs (i.e., different priority 

groups) are Identified with each class having its 

own associated quantum length. 

DN   Quantum length is defined as a function of the number 

of quanta a job has already received in an RR system 

or the level it has attained in an FB system. 

RN   At each level in an FB system, quantum length is char- 

acterized by a particular distribution function. 

DPN   Quantum length is defined as a function of both the 
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assigned priority class of a job and the number of 

quanta the job has already received In an Rfl system 

or the level it has attained in an FB system. 

DD   Quantum length is defined as a function of some dy- 

namic property of the system such as the number of 

jobs currently present or the number of jobs which 

have arrived in the recent past. 

A number of authors have also investigated deterministic 

quanta in the limiting case where quantum size approaches 

zero.  The term "processor sharing", which is due to Klein- 

rock (53). is commonly used to identify this limiting case. 

The following quantum types have appeared in conjunction 

with processor sharing systems: 

DIZ  Limit of type DI quanta as quantum size approaches 

zero. 

DPZ  Limit of type DP quanta as quantum size approaches 

zero. 

DPNZ Limit of type DPN quanta as quantum size approaches 

zero. 

Once a quantum controlled service discipline has been 

defined by specifying a scheduling algorithm and a quantum 

type, its behavior may be evaluated by any of a number of 

different methods.  For example, it is possible to implement 

the discipline within an actual system and the make appro- 

priate measurements while the system is operating.  Alter- 

natively, it is possible to incorporate the discipline into 
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a simulation model and then evaluate the model using Monte 

Carlo techniques.  A third possibility is to incorporate 

the discipline into a mathematical model and then evaluate 

the model analytically.  This third possibility will be 

examined more closely in the discussion which follows. 

The simplest mathematical model which can be applied 

to the evaluation of quantum controlled service disciplines 

is probably the single server queue.  For purposes of this 

discussion it is useful to consider such models as being 

composed of two independent components, a service disci- 

pline and a stochastic environment.  The first component 

has already been discussed in considerable detail, and so 

to complete the description of these models it is only 

necessary to consider the second component. 

A stochastic environment may be defined as everything 

which must be added to a service discipline in order to 

completely specify a particular queueing model.  More speci- 

fically, a stochastic environment consists of an arrival 

process, a service time distribution and an overhead assump- 

tion.  The nature of each of these three components will 

now be considered in some detail. 

Overhead Assumptions 

Overhead assumptions are needed to specify the amount 

of time necessary to transfer control of the CPU from one 

Job to another when a quantum expires or a job terminates. 
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Four overhead assumptions which have been used in conjunction 

with quantum controlled service disciplines may be identified 

as follows: 

Z    Zero Overhead - The CPU is switched from one job to 

another in zero time. 

C    Constant Overhead - A fixed amount of time is required 

to switch the CPU from one job to another. 

CPN  Constant Overhead for Specific Situations - The amount 

of time required to switch the CPU from one Job to 

another is some known function of the Job's priority 

class and the number of quanta it has already received 

in an RR system or the level it has attained in an FB 

system. 

R    Random Overhead - The amount of time required to 

switch the CPU from one job to another Is an arbi- 

trarily distributed random variable. 

Arrival Processes 

In an early paper, Kendall (50 ) classified a number of 

arrival processes and service time distributions which are 

important in the theory of queues.  Using an expanded and 

slightly modified version of Kendall's notation, the arrival 

processes which have proven useful In the analysis of quantum 

controlled service disciplines may be identified as follows: 

B    Bernoulli Arrivals - At the end of each quantum, a 

Bernoulli trial is made to determine whether or not a 
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new job is to arrive.  The probability of success 

(i.e., an arrival) is assumed to be the same in each 

trial.  If quantum length is constant (i.e., type DI), 

Bernoulli arrivals imply geometrically distributed 

inter-arrival intervals. 

M    Poisson Arrivals - In any time interval of length T, 

the probability that there will be exactly k arrivals 

(aT)k  -aT is equal to  . .'  e     where a is some positive 

constant.  This implies that inter-arrival Intervals 

are exponentially distributed with mean 1/a. 

Mf   Finite Source Poisson Arrivals - If the number of Jobs 

at the CPU is equal to j, then the amount of time 

until the next arrival is an exponentially distributed 

random variable with mean l/a(N-j)   where a is some 

positive constant and N is an integral constant.  No 

arrivals are possible when the value of j reaches N, 

and hence queue size Is bounded by N. 

G    General Arrivals - The inter-arrival intervals are 

entirely arbitrary and possibly correlated random 

variables.  Usually, all that is possible under gen- 

eral arrival assumptions Is to state the solution of 

one problem in terms of the solution of some other 

problem. 

In time-sharing systems, each active terminal functions 

as a source of jobs (i.e., CPU processing requests).  Since 

a terminal is not normally permitted to generate a new pro- 
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cessing request until its previous request has been completed, 

the job arrival rate typically declines as the number of in- 

complete Jobs waiting at the CPU increases.  However, this 

effect becomes less marked as the total number of active 

terminals increases and, in the limiting case where the num- 

ber of active terminals approaches infinity, it disappears 

entirely. 

Both Bernoulli and Poisson arrival processes correspond 

to this limiting case since neither exhibit any correlation 

between arrival rate and queue length.  Hence these processes 

are sometimes referred to as infinite source arrival pro- 

cesses and are best suited for modeling time-sharing systems 

with a large number of active terminals.  While the Bernoulli 

arrival process may be somewhat easier to conceptualize 

because of its discrete nature, both processes are mathe- 

matically attractive since both Incorporate the memoryless 

property discussed in Appendix A. 

The finite source Poisson arrival process explicitly 

represents the case in which the arrival rate decreases as 

the number of Jobs already waiting for CPU service increases. 

This is done by assuming that the length of time between the 

completion of a Job associated with a particular terminal 

and the generation of the next Job by that same terminal is 

an exponentially distributed random variable with mean 1/a. 

This random variable, which is commonly referred to as 

"think time", is assumed to have the same distribution at 
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all terminals.  Then, if the total number of terminals in 

the system is equal to N and the number of jobs at the CPU 

is equal to j, it follows that the amount of time until the 

next arrival is an exponenitally distributed random variable 

with mean l/a(N-J).  This is the rationale underlying the 

finite source Foisson arrival process. 

Service Time Distributions 

As is evident from the preceding discussion, one way of 

characterizing arrival processes is by defining the distri- 

bution of their inter-arrival intervals (i.e., the intervals 

between the arrival of successive customers).  These same 

distributions are often used to characterize the amount of 

processing time that individual Jobs request, and when this 

is done the abbreviation used to identify the arrival pro- 

cess is also used to Identify the corresponding service time 

distribution.  As the following list indicates, three of the 

four service time distributions which have been analyzed In 

the literature exhibit this correspondence. 

B    Bernoulli Sum Service Times - At the end of each quan- 

tum, a Bernoulli trial is conducted to determine 

whether the job which has just completed the quantum 

is to leave the system or re-cycle for at least one 

more quantum of processing.  The probability of leaving 

the system is assumed to be the same In each trial. 

Thus the total amount of service time required by a 
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Job Is distributed in the same manner as the inter- 

arrival Intervals of a Bernoulli arrival process 

operating with the same quanta. 

M    Exponential Service Times - The total amount of pro- 

cessing time required by each job is an exponentially 

distributed random variable.  These random variables 

are all independent and identically distributed. 

G    General Service Times - The total amount of processing 

required by each arriving job is an arbitrarily distri- 

buted random variable.  These random variables are all 

Independent and Identically distributed. 

H    Hyperexponential Service Times - The total amount of 

processing time required by an arriving Job is a hyper- 

exponentially distributed random variable.  These 

random variables are all independent and Identically 

distributed. 

In practice, the hypothesis of exponential service 

times has proven to be a crude but not unacceptable approx- 

imation to observed service times.  However, Walter and 

Wallace (82) indicate that a more precise fit to empirical 

data can be obtained by assuming that service times are 

hyperexponentially distributed.  One way to Interpret the 

hyperexponentlal assumption is to imagine that there exist 

two classes of Jobs, class A and class B, with incoming 

jobs falling into class A with probability p and into 

class B with probability p_  (p + p_ • 1).  Jobs in class A 
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are assumed to have exponentially distributed service times 

with mean 1/a while jobs in class B are assumed to have 

exponentially distributed service times with mean 1/b  (a^b). 

Under these conditions service times will be distributed as 

p.ae"  + Pgbe"   which is a hyperexponential density func- 

tion of the second degree.  In interactive time-sharing 

systems, class A may be associated with editing requests 

and class B with all other requests. 

Summary and Evaluation 

In summary, a quantum controlled service discipline is 

defined by specifying its scheduling algorithm and Its quan- 

tum type.  Once a service discipline has been defined. It 

may be evaluated by the use of queueing theory.  To do this 

it Is necessary to embed the service discipline in a sto- 

chastic environment which, as a minimum, must consist of an 

arrival process, a service time distribution and an overhead 

assumption.  This procedure for model construction is de- 

picted in Figure 2-3. 

As Indicated in Table 2-1, a large body of published 

research has been devoted to analyzing models which fall 

within the framework of Figure 2-3.  Most of the papers 
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AUTHOR (Ref. No.), 
DATE 

Adiri & 
Avi-Itzhak (5),1969 

Baskett (8),1970 

Chang (13).1966 

Coffman (17).1966 

Coffman (18),1967 

Coffman (19),1968 

Coffman (20),1968 

Coffman & 
Klelnrock (22),1968 

Coffman & Krishna- 
moorthl (23), 1964 

Coffman &  Muntz 
(24),1969 

Coffman, Muntz & 
Trotter (25),1970 

SCHEDULING 
ALGORITHM 

QUANTUM 
TYPE 

ARRIVAL 
PROCESS/ 
SERVICE 
DISTR. 

OVER 
HEAD 

RR DI Mf/M C 

RR DIZ Mf/H Z 

RR HI M/B Z,R 

RR, FBp , FBJJ DI.DN.DD M/M, Mf/M Z,C 

00 
DIZ 

  SURVEY   

RR,FB2 DI M/M c 

RR,FB2 DD 3/B z 

HR,FBN DI.DIZ B/B, M/M Z 

FB  /P 
00 

DPZ 

RR.RR/D DI Mf/B C 

RR,FB 
00 

BR 

DIZ 

DIZ 

M/G 

M/M 

Estrln & 
Klelnrock (31),1967 

"•* •• SURVEY   

Fife (34),1966 FB-/N DN Mf/H C 

Greenberger (44) , 
1966 

RR DI Mf/M C 

Klelnrock   (5D.1964    RR DI B/B 

Table 2-1  Part A 

Research and Survey Papers Dealing with the Analysis of 

Quantum Controlled Service Disciplines 
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AUTHOR (Ref. No.), 
DATE 

SCHEDULING 
ALGORITHM 

QUANTUM 
TXPE 

ARRIVAL 
PROCESS/ 
SERVICE 
DISTR. 

OVER 
HEAD 

Klelnrock (53).1967 RR DIZ.DPZ M/M Z 

Kleinrock (54),1968 RH DIZ Mf/M Z 

Klelnrock (55),1969 ALL TYPES DPN G/G CPN 

Klelnrock (56),1970 RR/D DIZ M/M Z 

Klelnrock & 
Coffman (57),1967 

ALL TYPES DPN 
DPNZ 

G/G Z 

Krlshnamoorthl 
(59),1966 

RR DI Hf/M C 

Krlshnamoorthl & 
Wood (60),1966 

RH.RR/D DI Mf/M C 

McKlnney (6l),1969   SURVEY   

Patel (6^),196^ RH.FB^/PO DI.DN Mf/G, M/G Z,C 

Rasch (66),1970 RR DI M/M z,c 

Sakata, Noguchi & 
Olzuml (68),1969 

RR DIZ M/G z 

Scherr (69).1965 RR DIZ Mf/M 7. 

Schrage (70),1967 

Shemer (75),1967 

FB 
00 

RR.FB^/P 

RN.DN 
DIZ 
DI.DN 

M/G, M/M 

M/M 

z 

z 

Table 2-1  Fart B 

Research and Survey Papers Dealing with the Analysis of 

Quantum Controlled Service Disciplines 
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present an analysis of a specific model: that is, of a par- 

ticular service discipline operating in a particular stochas- 

tic environment.  Usually the point of the analysis is to 

obtain an algebraic formula which expresses the expected 

waiting time of a job as a function of the Job's execution 

time.  This makes it possible to determine the extent to 

which short Jobs are favored over long Jobs.  In addition, 

since these formulas typically Include quantum length, over- 

head time, arrival rate and mean service time as parameters, 

it is possible to examine the treatment of long and short 

Jobs under a wide variety of conditions. 

There are a number of uses to which such formulas might 

be put.  Perhaps the most obvious is the determination of 

optimal quantum length for models in which both the quantum 

length and the overhead time are non-zero.  In such models 

longer quanta reduce overhead but also increase the expected 

waiting time for short Jobs.  On the other hand, very short 

quanta result in a high percentage of overhead, thus in- 

creasing the expected waiting time for all Jobs including 

the short ones.  Hence it is reasonable to suppose that an 

optimal quantum length exists at some Intermediate point. 

To determine this optimal length It is first necessary 

to define exactly what it is that is being optimized.  A 

convenient way to approach this problem is to define a cost 

function which reflects the delays associated with the system 

and then to try to minimize cost.  Since quantum controlled 
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service disciplines are primarily designed to provide good 

service to short jobs, it is reasonable to assume that the 

cost associated with keeping a short Job waiting is greater 

than the cost associated with keeping a long job waiting. 

It is also reasonable to assume that the longer a Job is 

kept waiting, the greater the cost. 

The simplest way to represent these two assumptions 

mathematically is to define the cost of keeping a Job with 

total service time S waiting for a period of time T as 

T»F(S) where F is a positive, non-increasing function of S. 

Cost functions constructed in this manner have been analyzed 

by Fife (3*4-), by Greenberger (^4), and most comprehensively 

by Rasch (66).  More Information must be collected before 

any general results can be reported, but the potential for 

additional work in this area is quite promising since a num- 

ber of models have been solved analytically and only a very 

few have been optimized with respect to quantum length. 

A number of other significant problems in the area of 

quantum controlled service disciplines also exist.  For 

example, it would be valuable to compare the performance of 

RR and FB algorithms under a variety of overhead assumptions 

to determine the optimal algorithm for a specific applica- 

tion.  The optimal choice could be specified under relatively 

simple quantum assumptions (e.g., DI) or under more complex 

quantum assumptions (e.g., DPN or DD).  Note that It is 

necessary to solve the optimal quantum length problem for 
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each specific algorithm before attacking this comparison of 

optima problem.  Fife (3^) deserves recognition for the 

results he has obtained in this area, but unfortunately his 

work is of somewhat limited appeal because of its numerical 

rather than algebraic nature; all the other papers appearing 

in Table 2-1 are distinctly algebraic. 

Another consideration which naturally emerges from this 

discussion is the relative Importance of the arrival process 

and the service time distribution in optimization problems 

in general.  For example, do exponential and hyperexponential 

service time distributions or finite and infinite source 

arrival processes yield different optima?  If so it is neces- 

sary to examine the arrival and service time statistics very 

carefully before selecting an algorithm.  If not, it may be 

possible to discfcver general guidelines which can be followed 

with confidence in a variety of situations. 

It should be clear from the preceding discussion that 

even though a considerable amount of effort has already been 

expended analyzing quantum controlled service disciplines, 

many problems remain unsolved.  However, these problems are 

qualitatively different from the earlier ones in that they 

deal with the optimization and comparative evaluation of 

provlously analyzed models rather than the determination of 

conditional waiting times for newly proposed models. Thus 

solutions to these new problems will be built upon existing 

knowledge in a way that is characterlctic of many other 

branches of science and mathematics. 
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CONVENTIONAL FHIOrilTY DISCIPLINES 

In most real-time systems, Incoming jobs are assigned 

to different priority groups according to the relative ur- 

gency with which they must be completed.  Jobs which must 

be completed in the shortest possible time are assigned to 

the highest priority group, slightly less urgent Jobs are 

assigned to the next highest priority group, and so on. 

Note that a Job's priority group, which Is the basis for 

providing preferential service, is specified at Job entry 

time.  This is in contrast with interactive time-sharing 

systems employing quantum controlled service disciplines 

since these systems use total running time as the basis for 

providing preferential service even though this factor Is not 

assumed to be specified at job entry time. 

The service disciplines used in formulating queuelng 

theoretic models of real-time systems are known as conven- 

tional priority disciplines.  These service disciplines all 

exhibit the following three characteristics: 

1. Jobs are assigned to priority groups at the time they 

first enter the system. 

2. Whenever a server becomes available  it is always 

assigned to a job from the highest non-empty priority 

group. 

3. A Job's priority group never changes. 
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Conventional priority disciplines may be partitioned 

into a number of subcases by giving different interpreta- 

tions to the notion of availability which appears in Char- 

acteristic 2.  For example, if a server becomes available 

only after completing the processing of a job, the disci- 

pline is known as non-preemptive or head-of-line.  Under 

this discipline, a Job is always allowed to run to comple- 

tion even though a higher priority job may arrive while it 

is being processed. 

A second possibility is to assume that servers are 

always available.  Thus, if a higher priority Job arrives 

while a lower priority Job is being served, the latter will 

be ejected from the service facility and the higher priority 

job will begin to receive service immediately.  Disciplines 

in which jobs can be ejected from the server in this way 

are known as preemptive disciplines. 

Preemptive disciplines may be further subdivided on 

the basis of the treatment given to Jobs which return to 

the service facility after having been preempted.  If such 

jobs are permitted to simply continue service from the point 

where they were interrupted, the service discipline is known 

as a preemptive-resume discipline.  If, on the other hand, 

Jobs are forced to return to their original starting points 

and repeat everything they have already done, the discipline 

is known as preeraptive-repeat-identlcal.  This discipline is 

of some Interest in computer applications where It may be 
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preferable to restart a job frc- its Initial point rather 

than save all its status information and temporary storage 

so it can be started ap-aln from the point of Interruption. 

Freemptlve-repeat-identical disciplines are distin- 

guished from preemptive-repeat-different disciplines by the 

fact that, in the latter case, the amount of processing time 

that a Job requests is re-calculated each time a Job is re- 

started from its initial point after a preemption. Preemp- 

tive-repeat-different disciplines appear to have few if any 

applications in computer systems analysis and are mentioned 

only for the sake of completeness. 

An early example of the application of non-preemptive 

priority disciplines to the analysis of computer systems is 

presented by Chang and Wong (16).  In a more recent paper, 

Chang (15) presents a number of other examples involving 

both non-preemptive and preemptive-resume disciplines.  This 

latter paper is also valuable for tutorial purposes since a 

number of analytic techniques are carefully reviewed. 

The discussion thus far has assumed that within each 

priority group service is provided on a PCFS basis.  It is 

also possible to study conventional priority systems in 

which the intra-group service discipline is of the quantum 

controlled type.  For example, Chang (14) has analyzed a 

model in which each priority group functions as a type HR, 

31, '/3, Z system, and Adlri (3), (4)  has considered the 

case in >Thich each priority group functions as a type HH, 
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DI, M/M, C system. 

Both Chang (14) and Adlrl (3) assume that the priority 

discipline operating between groups is of the preemptive- 

resume type.  In his more recent paper, Adiri (4) considers 

three additional inter-group disciplines.  The first assumes 

that once a job has been allocated a quantum of processing, 

no preemption is possible until the end of that quantum is 

reached.  Preemption occurlng at the end of a quantum is of 

the preemptive-resume type. 

In the second discipline jobs may be preempted at any 

time, but preemption causes the intermediate results de- 

veloped during the current quantum to be lost.  That is, a 

preempted Job is restarted from the beginning of the quantum 

it was receiving when it was interrupted.  This discipline 

is thus midway between the preemptive-repeat-identical 

discipline and the preemptive-resume discipline. 

The third discipline is a combination of the second 

discipline and the standard preemptive-resume discipline. 

Preemption is permitted at any time and, if a job is pre- 

empted during the initial overhead phase (I.e., the set-up 

period) of the quantum, the quantum is considered lost and 

the job is later restarted from the beginning of that quan- 

tum as in the previous case.  However, if a Job is inter- 

rupted during the processing phase of the quantum, the Job 

•These classifications correspond to the column designations 
of Table 2-1. 
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is later restarted from the point of interruption as In the 

preemptive-resume case.  This particular discipline would 

appear to be a logical choice for actual real-time systems 

employing; quantum controlled service disciplines within each 

priority group. 

Schrage (71) presents a model which is similar to 

Adiri's except that the service discipline within each pri- 

ority group is of the FCFS type.  Schrage assumes that each 

Job is partitioned into a set of non-preemptive, preemptive- 

resume and preemptive-repeat Intervals.  A higher priority 

Job arriving during a non-preemptive interval must wait 

until the end of that interval before gaining control of 

the CPU which is finally relinquished on a preemptive-resume 

basis.  During preemptive-repeat intervals, higher priority 

Jobs immediately gain control of the CPU, and the Job which 

was preempted is forced to begin again from the start of 

the preemptive-repeat interval.  This corresponds to Adlri's 

second discipline.  Finally, during a preemptive-resume 

Interval, preemption occurs in the normal preemptive-resume 

sense. 

Schrage also treats the possibility of overhead during 

each preemption.  His model is thus capable of representing 

actual systems with a high degree of precision.  Unfortu- 

nately, examples including non-zero preemptive overhead 

prove difficult to treat analytically and are only discussed 

in numerical terms. 
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Since the primary reason for implementing conventional 

priority service disciplines is to provide higher priority 

jobs with preferential service, most analyses are concerned 

with obtaining waiting times for Jobs in each priority group. 

In general, preemptive disciplines favor high priority Jobs 

more than non-preemptive disciplines, but the optimal amount 

of preemption to permit is an open question, especially in 

cases where preemption introduces overhead.  Schrage (71) 

has obtained some preliminary results along these lines, 

but the potential for additional work in this area is great. 

While not directly related to the primary concerns of 

this section, it is interesting to note that priority disci- 

plines can be used to analyze limiting aspects of the ration- 

ale which underlies the quantum controlled service disci- 

plines discussed in the preceding section.  Recall that the 

primary purpose of quantum controlled service disciplines 

is to provide short Jobs with preferential service.  The 

problem Is that Job length is not assumed to be specified 

at the time a Job enters the system.  However, if such in- 

formation were available, it would be a simple matter to 

define a service discipline which, at any point in time, 

always provided service to the shortest Job present. 

Such a discipline can be considered to be a conventional 

preemptive-resume priority discipline where the priority 

of an entering Job is given by the total processing time of 

that Job, shorter Jobs having higher priority.  If the 
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arrival process is Poisson with mean rate u and the service 

time distribution has density function g(t), then there will 

be a continuum of priority groups corresponding to all the 

positive real numbers.  The arrival process for all the 

priority groups between r and r1 will be Poisson with mean 

rate V  u.g(t) dt, and of course all programs arriving at 

priority group r will have execution time equal to r.  This 

particular discipline is closely related to the disciplines 

studied by Fhipps (65) and by Schrage and Miller (72). 
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ROTATING STORAGE SERVICE DISCIPLINES 

A great many computer systems utilize rotating disks or 

drums as auxiliary storage devices.  For purposes of this 

discussion a drum will be defined as any rotating storage 

device with fixed read/write heads while a disk will be de- 

fined as any rotating storage device with movable read/write 

head.  Note that under these conventions, devices commonly 

known as fixed-head or head-per-track disks are classified 

as drums. 

When analyzing the performance of disks and drums, it is 

natural to think in terms of a queueing process in which In- 

coming read and write requests represent customers, the disk 

or drum represents the server, and the amount of time neces- 

sary to complete a read or write request represents the 

service time.  The service time in drum systems is the sum 

of two components, the rotational delay associated with 

bringing the proper drum sector to the read/write heads plus 

the actual time required to make the transfer.  With disks 

the service time is the sum of these two components plus the 

time necessary to move the read/write heads into proper 

position (i.e., the seek time).  Since service times are 

slightly simpler In the case of drums, these devices will be 

considered first. 

From an analysis standpoint, the most interesting aspect 

of drum systems is the order in which transfer requests are 
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serviced.  Note that the FCFS discipline is highly ineffi- 

cient since the time spent waiting for a particular sector 

to rotate into position under the drum heads could be better 

spent transferring data to or from the sectors passing under 

the heads during the waiting period.  A more efficient disci- 

pline can thus be constructed by sorting all requests accord- 

ing to the drum locations they reference and then always 

servicing the request which the heads will reach next.  This 

discipline, which Denning (28) designates as shortest access 

time first (SATF),  has been studied by Welngarten (84), 

Denning (28), Coffman (21), and Abate and Dubner ( 1 ). 

The first three authors consider the case in which 

transfer requests always reference data blocks of fixed 

length.  Denning is primarily concerned with estimating 

average service time as a function of the number of requests 

waiting in the queue.  Welngarten and Coffman hypothesize 

Polsson arrivals and then evaluate system performance as a 

function of the mean arrival rate, with Welngarten1s solu- 

tion serving as an upper bound to the more exact solution 

obtained by Coffman.  Abate and Dubner, who deal with the 

case of variable block size, present only approximate re- 

sults for this more difficult problem. 

Since disks are also rotating devices, they too may 

employ SATF service disciplines.  That is, after the heads 

•Welngarten (84), for entirely frivolous reasons, refers to 
this service discipline as the Eschenbach scheme in memory of 
the Bavarian poet Wolfram von Eschenbach (1170-1220).  The 
term has gained little currency. 
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have been positioned in a particular location (I.e., on a 

particular cylinder), the SATF discipline can be used to 

sequence through all the transfer requests which reference 

that cylinder.  Welngarten (85) has analyzed the effect 

that such a discipline can be expected to have on system 

performance,  "-Tost other investigators have simply assumed 

a FCFS discipline within each cylinder, arguing that since 

the number of cylinders per disk is large - typically on 

the order of 100 or 200 - it is unlikely that there will 

be a significant number of requests queued for a particular 

cylinder at any given time unless disk use is extremely 

heavy.  These investigators thus concentrate on other aspects 

of disk behavior in their models. 

One frequently studied problem concerns the scheduling 

of transfer requests in a way that reduces disk head move- 

ment.  Again, the simplest policy is to service all requests 

on a FCFS basis with no consideration of the resulting head 

movement.  A second policy, termed shortest seek time first 

(SSTF) by Denning (28), corresponds to the SATF policy in 

that the heads are moved as little as possible on each seek. 

This is essentially a step-by-step or local minimization 

process.  Frank (39) considers the global minimization problem 

of finding the seek pattern which minimizes the total amount 

of seek time necessary to service all requests present in 

the disk queue at a given time. 

During periods of heavy load both minimization policies 
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have the potential disadvantage of creating excessively long 

delays for certain requests.  This is because minimizing 

head movement tends to keep the heads in a particular region 

for a long period of time.  Newly arriving requests directed 

towards this region will receive good service since they 

will require comparatively short seeks.  However, requests 

directed towards more distant regions will continue to wait 

since it would be sub-optimal to move the heads a large dis- 

tance to serve these requests and then to move the heads all 

the way back to serve the newly arrived requests. 

To avoid the possibility of these excessive delays, 

Denning ( 28) has proposed a head movement policy called SCAN 

in which the heads continually sweep back and forth across 

the disk, servicing requests for each cylinder they pass but 

never changing direction until the end of the sweep.  Denning 

(28) compares this policy with FCFS and SSTF and concludes 

that SCAN is the most desirable even though SSTF is more 

efficient.  Weingarten ( 85) t Sharma ( 74), and Frank (39) 

have also chosen versions of SCAN for their main analyses. 

Another way of reducing seek time on disks is to organ- 

ize the data so that the most frequently referenced records 

are on the middle cylinders.  Thus, the heads will never 

have to move more than half the full seek distance to reach 

these records.  The possible effects of such a policy on 

performance are considered by Frank ( 39) and by Abate, Dub- 

ner and tfeinberg ( 2 ).  Sharma (74) also discusses the 
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problems associated with allocation of data on disks, con- 

centrating on situations xrtiere a single record may be quite 

large. 

An entirely different analysis problem is associated 

with disk systems which contain a number of Independently 

positionable sets of heads.  Usually, each set of heads 

serves a different disk drive, with a number of drives 

connected to a single channel capable of transferring data 

to or from only one drive at a time.  Thus, seek operations 

can be carried out in parallel while transfers must be 

processed serially.  The performance of systems of this 

type has been studied by Fife and Smith (36), Seaman, Lind 

and Wilson (73), and Abate, Dubner and Weinberg (2). 
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CAPACITY PROBLEMS 

The primary emphasis of the preceding three sections 

has been on the determination of response times and waiting 

times in various queuelng situations.  In addition to these 

time oriented problems, queuelng models can also be used to 

treat a number of space oriented problems related to such 

Issues as the amount of storage required by waiting jobs, 

the time between queue overflow in finite capacity systems, 

and the allocation of queue space in finite capacity systems 

with priority or multiple source inputs.  These questions, 

which will be grouped together under the heading of "Capacity 

Problems", have been studied in computer oriented contexts 

by Boudreau and Kac ( 9 ), Harrison (^5), Weingarten (83), 

Chang and Wong (16), Chang (13), and Bowdon (10). 

Several of these papers treat systems in which arrivals 

occur in groups or batches.  In such systems a random vari- 

able is associated with each arrival to specify the number 

of customers who have Just arrived.  Inter-arrival intervals 

are determined by the arrival process as in ordinary queuelng 

systems.  Thus ordinary queuelng systems can be regarded as 

special cases of batch arrival systems in which the number 

of customers per arrival is always equal to one. 

A very early example of a batch arrival model is pre- 

sented by Boudreau and Kac ( 9 )•  This model consists of an 

input generator which presents a processing unit with a set 
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of transactions to process once every n seconds.  The number 

of transactions presented is an Integer valued random vari- 

able with a positive probability of being equal to zero, and 

the amount of time required to process an individual trans- 

action is equal to 2n (i.e., twice the input generation 

period).  Under these assumptions Boudreau and Kac calculate 

the distribution of the number of transactions in the system 

at equilibrium using a Markov chain approach.  They also 

calculate the average time between queue overflow in cases 

where only a finite amount of storage is available. 

Weingarten (83) presents a model of a message switching 

computer which also includes batch arrivals.  In this model 

there are n input lines all sending messages to a single 

processor.  The function of the processor is to simply re- 

transmit these messages on a character by character basis. 

The amount of time required to re-transmit a single character 

is assumed to be a constant, and so the amount of time re- 

quired to re-transmlt a message is proportional to the number 

of characters in the message. 

Each input line is assumed to generate messages accord- 

ing to a Poisson process, and the amount of time required to 

re-transmit each message is assumed to be an exponentially 

distributed random variable.  Weingarten then considers the 

queueing system in which characters correspond to customers, 

arrivals occur in batches of exponential size, and the ser- 

vice time per customer is constant.  Note that this model 
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requires a slight modification of the notion of batch ar- 

rivals since the number of customers per batch is no longer 

necessarily integral. 

The advantage of Weingarten's model is that the number 

of characters in the system at any time is simply equal to 

the waiting time for an arriving message multiplied by the 

number of characters which can be transmitted per unit time, 

The waiting time for an arriving message can then be calcu- 

lated for the simpler case of Poisson arrivals and exponen- 

tial service times.  Weingarten goes on to calculate the 

average time between queue overflow in cases where only a 

finite amount of storage is available.  Since this problem 

is more difficult than the corresponding one considered by 

Boudreau and Kac, a number of simplifications have to be 

made and only approximate results are obtained. 

Harrison (*+5) considers a message switching computer 

similar to the one analyzed by Weingarten, the difference 

being that Harrison defines capacity in terms of stored 

messages rather than stored characters.  Aside from this, 

Harrison's model closely resembles Weingarten's in that a 

number of input lines send messages to a single processor 

for re-transmission, each input line functions as a Folsson 

source, and message re-transmission times are exponentially 

distributed.  Harrison compares the performance of systems 

having a dedicated fixed buffer for each line with the per- 

formance of systems having a single shared buffer serving 
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all lines. Needless to say, the latter arrangement proves 

more efficient. However, overhead factors associated with 

implementation are not taken into account. 

In the batch arrival models presented by Boudreau and 

Kac and by Weingarten, the service time for each customer 

is  defined as a constant.  It is also possible to construct 

batch arrival models in which the service time for each 

customer is a random variable.  Delbrouck (27) presents a 

model of this type in which service time is a complex random 

function including both initial set-up time and processing 

time.  Delbrouck's model is used to analyze certain problems 

related to the polling of input lines in computer systems. 

Since the model is not primarily concerned with capacity 

problems, it will not be discussed further in this section. 

Chang and Wong (16, p. 587) present a slightly different 

approach to the problem of queue capacity.  This approach, 

which is discussed more thoroughly in a later paper by Chang 

(13, p. 122), is to assume that the amount of space required 

to store each Job is specified by a random variable with 

generating function F(z).  Then, if the generating function 

for the number of jobs in the queue is given by U(z), the 

total storage requirement for all jobs in the queue will 

have generating function U(F(z)).  This follows directly 

from the discussion of compound generating functions pre- 

sented by Feller (32, p. 268).  The advantage of this ap- 

proach is that U(z) can often be determined using standard 
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procedures or well known formulas.  Then, once F(z) is speci- 

fied, the generating function for the total storage required 

by the Jobs in the queue can be immediately obtained. 

Bowdon (10) examines the problem of managing finite 

capacity queues in systems which incorporate conventional 

priority service disciplines.  The specific model Bowdon 

considers consists of R priority classes being served on a 

non-preemptive basis by a single service facility composed 

of K identical servers.  Arrivals to each priority class 

are generated by a Poisson process, and all Jobs have expo- 

nentially distributed service times with the same mean. 

Bowdon adds to this rather familiar system the addi- 

tional restriction that queue length may not exceed M jobs. 

If a new Job arrives when the queue length is equal to M, 

that Job is permitted to enter the queue only if there is a 

Job already waiting in the queue whose priority is lower 

them that of the newly arriving Job.  In such cases the 

newly arriving Job displaces the lower priority Job and the 

latter is simply considered lost.  Likewise, Jobs which 

arrive at a time when the queue length is equal to M and 

which find no Jobs of lower priority already waiting in the 

queue are also lost.  Bowdon then calculates the average 

number of Jobs of each priority class in the queue, the 

average waiting time for Jobs of each priority class, and 

the probability that a Job of a particular priority class 

will not be displaced by a higher priority Job while it is 

waiting. 
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NETWORK MODELS 

All the examples discussed thus far have been concerned 

with the analysis of individual processing elements such as 

CPU's, disks or drums.  In actual computer systems these 

processing elements interact with each other since the com- 

pletion of a CPU processing request is usually followed by 

the initiation of an I/O processing request and vice versa. 

Queuelng networks provide a natural mathematical tool for 

analyzing situations of this type, and so it is not sur- 

prising that network models have been applied to a number 

of problems in computer systems analysis. 

As indicated in Chapter 3. a great deal of effort has 

been devoted to obtaining closed form expressions for the 

equilibrium distributions of various queuelng networks. 

These distributions may also be obtained numerically using 

a fairly simple iterative technique once the network param- 

eters are specified.  A computer program based on this 

iterative technique has been developed at the University of 

Michigan and is described by Wallace and Rosenberg (81). 

This program has been applied to a number of problems in 

computer systems analysis as indicated by the work of Fife 

and Rosenberg (35), Smith (76), (77), and Wallace and Mason 

(80). 

Fife and Rosenberg consider a situation in which pro- 

grams arrive at the system, are loaded into core through a 
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single I/O channel, execute for a certain period of time, 

and then leave.  The loading of one program may proceed in 

parallel with the execution of another so long as there is 

enough room in core to load the new program.  To simplify 

matters, it is assumed that all programs are approximately 

the same size and that the capacity of core is five programs 

Arrivals to the system are assumed to form a Poisson 

process, and both program loading and execution times are 

assumed to be exponentially distributed.  In this model, 

program execution time includes output transmission time as 

well as CPU processing time.  Since output transmission 

occurs at teletype speed and can be performed in parallel 

on a multiplexed basis, and since CPU processing time is 

quite small in comparison to output transmission time, it 

Is approximately true that program execution proceeds In 

parallel for all programs In core.  Note that this is not 

identical to the processor sharing assumption discussed 

previously since parallel operation does not result in a 

proportional decrease in the execution rate of each job. 

Fife and Rosenberg use this model to explore the effect 

on system performance of the program loading time to program 

execution time ratio.  Since the model itself can be criti- 

cized on a number of grounds, especially with the advantage 

of seven years' hindsight, particular results will not be 

discussed in detail.  The real significance of this work Is 

that it demonstrated, at a relatively early date, the  ap- 
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plicability of numerically evaluated queuelng network models 

to problems in computer systems analysis. 

Smith (76) also appears to be more Interested In demon- 

strating the applicability of the method than In attacking 

a particular problem.  Smith's paper actually presents two 

different models:  a highly complex and realistic one which 

could in principle be analyzed using the queuelng network 

approach, and then a somewhat simplified but still realistic 

model which is analyzed numerically.  The second model con- 

sists of a CPU, a disk storage device, and a finite number 

of interactive user terminals.  Programs are loaded from 

the disk and then request a certain amount of CPU processing. 

Each time a program completes a CPU request, one of three 

alternatives is selected:  with probability q, a request is 

made for user terminal input; with probability p, a request 

is made to load an overlay segment from the disk; with 

probability r = 1-p-q, the program terminates and a request 

is made to load the next program from disk.  The values of 

p, q and r are constant and thus do not depend on the number 

of CPU requests a program has previously made. 

Since overlay and new program loading requests both 

utilize the same I/O device and channel, it is necessary to 

specify the order in which these requests are served.  Smith 

evaluates two different service disciplines, non-preemptive 

priority with program loading requests favored and preemp- 

tive-repeat priority with overlay requests favored.  Pre- 
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emption is of interest in the second case because it is 

assumed that program loading requires an average of two 

seconds while segment overlay requires an average of only- 

ISO milliseconds. 

As an additional point of interest, Smith Introduces 

two possible distributions for program loading time, expo- 

nential and second order Erlang.  This illustrates the point 

that the servers in numerically evaluated queueing networks 

need not all be exponential.  In fact, any distribution 

whose Laplace transform is equal to the quotient of two 

polynomials may be used.  Such non-exponential servers are 

constructed using Erlang*s method of stages as described by 

Wallace and Rosenberg (81).  Cox and Smith (26, pp. 110-117) 

present a more detailed discussion of this method. 

Smith's paper thus Introduces three important aspects 

of queueing network models which do not appear in the earlier 

work of Fife and Rosenberg.  These are the use of non-expo- 

nential servers, flexibility in service disciplines, and the 

ability of a customer leaving one server to select the next 

server according to a fixed set of probabilities. 

In a subsequent paper. Smith (77) introduces still 

another aspect of queueing network models, namely the pos- 

sibility of having service time depend on queue length. 

This is useful when modeling drum behavior since, assuming 

the drum discipline Is SATF, the mean time between transfers 

- and hence the mean service time - will decrease as the 
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length of the drum queue Increases.  In addition to an SATF 

drum, Smith's model contains a CPU and a finite capacity 

paged core memory.  Programs execute on the CPU until they 

generate a page fault, then request a page transfer from 

the drum, then execute until the next page fault, and so 

on until they terminate. 

Smith explicitly represents the fact that the amount 

of time a program executes between page faults depends on 

the number of pages the program already has in core.  This 

is done by assuming that each time a program requests CPU 

service, the amount of service provided is an exponentially 

distributed random variable whose mean is an empirically 

determined function of the number of pages the program has 

In core.  Smith uses the same approach in his drum model, 

letting the drum service time be an exponentially distri- 

buted random variable whose mean is a function of the length 

of the drum queue. 

Smith then examines system performance under a variety 

of Job mixes, multiprogramming allocation policies, and drum 

speeds, reaching the conclusion that demand paging in systems 

with a small amount of main memory and a conventional speed 

drum results in excessive page traffic and low CPU utiliza- 

tion.  In addition to introducing the notion of state depen- 

dent service times, this model is noteworthy for its repre- 

sentational fidelity and for the accuracy of lt» predictions. 

Wallace and Mason (80) analyze a paging system that is 
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quite similar to Smith's, the primary difference being that 

Jobs are initiated by the loading of an entire block of 

pages rather than by the loading of a single page.  The 

initial block of pages is not intended to represent a pre- 

paglng operation, but instead represents an initial burst 

of page demands generated during the first millisecond or 

so of CPU execution.  Since the CPU execution time is negli- 

gible, this burst of individual requests is combined into 

the initial block to simplify the model. 

After the initial block of pages has been loaded, pro- 

grams are assumed to attain a kind of equilibrium in which 

the Interval between page faults is no longer sensitive to 

the total number of pages In core.  This represents a simpli- 

fication of Smith's earlier model.  In addition, drum service 

times are assumed to be insensitive to the length of the 

drum queue, thus further simplifying Smith's model.  Both 

drum service times and CPU service times (i.e., intervals 

between page faults) are exponentially distributed. 

To complete their model, Wallace and Mason assume that 

each time a program completes a CPU service request, the 

decision as to whether a page fault is to be generated or 

the program is to be terminated is determined by an indepen- 

dent Bernoulli trial.  Thus, programs enter the system with 

an initial block of pages, then alternate between CPU pro- 

cessing and I/O processing for a period of time, and then 

finally leave. 
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In this model the size of memory is proportional to 

the maximum number of programs which may be either queued 

for or receiving CPU or I/O processing.  This number is 

varied to determine its effect on system performance.  It 

is of interest to note that for a wide range of parameters 

Wallace and Mason find that there is comparatively little 

gain in system performance after memory size goes beyond 

eight programs. 

Klelnrock (52) presents a network model which is not 

based on the numeric approach of the four preceding papers 

but is instead based on an analytic closed form solution 

obtained by Koenigsberg (58).  Klelnrock first considers a 

system composed of two processors, Processor 1 and Processor 

2.  Jobs entering the system are first served by Processor 1, 

then held in an inter-processor buffer, then served by 

Processor 2, and then ejected from the system.  It is assumed 

that the inter-processor buffer has a maximum capacity of 

N Jobs. 

When the inter-processor buffer fills up. Processor 1 

is forced to stop operating and system performance suffers. 

Since the probability of the buffer filling up depends on N 

and on the ratio of the service times of the two processors, 

Kleinrock systematically varies these parameters and calcu- 

lates the effect on system performance. It should be noted 

that service times are assumed to be exponential in all 

cases. 
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Kleinrock then generalizes the problem by considering 

the case of M processors with jobs proceeding sequentially 

from Processor 1 to Processor M and then leaving the system. 

Again, each lnter-processor buffer Is assumed to have a 

capacity of N jobs.  Only approximate results are obtained 

for this more difficult case. 

Gaver (40) presents an analytic solution for a rather 

different network model.  Gaver's model consists of a CPU, 

a fixed number of Identical I/O processors, and a fixed 

number of programs.  Each time a program completes a CPU 

processing request. It generates an I/O processing request 

and vice versa.  All I/O processing requests are exponentially 

distributed with the same mean, and there Is no queuelng for 

I/O requests unless the number of programs currently re- 

questing I/O exceeds the number of available I/O processors. 

In particular. If the number of programs In the system Is 

less than or equal to the number of I/O processors In the 

system, queuelng for I/O never occurs. 

Gaver proceeds to calculate CPU utilization as a func- 

tion of the number of programs in the system.  The unique 

significance of this work is that Gaver is able to carry out 

this calculation without explicitly specifying the CPU 

service time distribution.  That is, the CPU service time 

distribution appears as a parameter in the final expression 

for CPU utilization.  It is thus possible to ev^iluate the 

effects of different service time distributions in an effi- 
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clent manner.  As an application, Gaver shows the extent to 

which CFU utilization is reduced as the variance of the 

service time increases in cases where the mean service time 

is held constant. 

It is worthwhile to point out the correspondence between 

Gaver's model and the finite source time-sharing models dis- 

cussed earlier.  As long as the number of I/O processors is 

equal to the number of circulating programs, Gaver's model 

corresponds precisely to a finite source time-sharing model 

with exponential "think times", an FCFS service discipline, 

and general service times. 

The special advantages of queueing network models in 

computer systems analysis should by now be apparent.  Such 

models are well suited for representing concurrent operation 

of a number of processing units, and the size of main memory 

is often representable as the number of circulating customers 

(I.e., programs) in either some part of or all of the net- 

work.  In addition, the opportunity exists for realistically 

representing program behavior as an alternating sequence of 

CPU and I/O processing requests. 

A number of recently developed network models are dis- 

cussed in subsequent chapters of this thesis.  These models 

include the work of Baskett (8), Arora and Gallo (7), 

Moore (62) and Tanaka (79). Baskett's model is discussed on 

pages 189-192 of Chapter 7 while the other three models are 

discussed at the beginning of Chapter 8. 
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CHAPTER 3: SURVEY OF QUEUEING NETWORK RESEARCH 

EARLY DEVELOPMENTS 

Output Distributions 

A queuelng network Is a collection of service facilities 

arranged In such a way that customers must proceed from one 

to another In order to fulfill their service requirements. 

The essential feature of such systems Is that the output of 

one service facility may make up part or all of the Input to 

another service facility.  Thus some of the early research 

In this area was devoted to determining the distribution of 

the output of a single service facility. 

Burke (11) studied the case of a single service facility 

composed of an arbitrary number of parallel exponential 

servers.  Under the assumption of Polsson arrivals. Burke 

proved that the steady state departure process Is of the same 

form as the arrival process (I.e., Folsson).  He also showed 

that the departure process Is Independent of the queue size 

left by a departing customer.  Reich (67) showed Burke's 

first result Is not true In general by constructing a spe- 

cific example In which the arrival and departure processes 

differ at equilibrium.  Finch (38) examined the generality 

of Burke's second result and was able to show the the depar- 

ture process Is Independent of the queue size left by a 

departing customer If and only If service times are exponen- 

tial and Infinite length queues are permitted. 

63 



With the work of Reich and Finch posing potential 

complications to any general analysis, most studies of 

queuelng networks have been restricted to the case in which 

individual service times are exponential and arrivals to 

the network, if any, are Poisson.  In this case the entire 

system can be treated as a continuous time Markov process 

and the steady state distribution may be obtained by solving 

the appropriate set of linear equations.  The remainder of 

this Chapter will be devoted to examining solutions obtained 

by this method. 

Analysis of Specific Network Types 

At this point it is useful to Introduce a schematic 

notation for representing queuelng networks.  Let empty 

circles denote service facilities having exponential service 

times, let rectangles denote the location of queues, and let 

the flow of customers through the network be indicated by 

arrows.  Thus Figure 3-1 is intended to represent a network 

made up of two queues in series. 

yo *CZZK> 

Figure 3-1 

Two Queues in Series 

The arrow entering the network represents customers arriving 

according to some stationary Poisson arrival process and the 
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arrow leaving the network at the right represents departing 

customers.  Unless otherwise specified It will be assumed 

that the means of the various arrival and service processes 

are arbitrary and that there are no bounds on the maximum 

queue lengths.  This particular network, consisting of only 

two queues, was examined in an early paper by O'Brien (63). 

Expanding the notation, let a circle containing the 

letter P denote a service facility made up of an arbitrary 

number of Identical exponential servers operating in parallel. 

That is, if there are p exponential servers in parallel each 

having mean rate u, then the service facility provides 

service that is exponential with mean rate u-mln(p,k) where 

k Is the number of customers present at the facility.  Figure 

3-2 provides an example of this notation.  As in Figure 3-1 

no assumption is made about the relative number or rate of 

the servers at each facility.  Networks of this type with an 

arbitrary number of queues were studied by R.R.P. Jackson 

(49). 

y® *tzz>® *CZZK!^ 

Figure 3-2 

Parallel Servers 

Continuing to expand the notation, let a circle with 

more than one arrow leaving it indicate customers may leave 

that service facility by taking any one of a number of paths. 
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For example, in Figure 3-3 a customer leaving service facility 

3 can return to service facilities 1, 2 or 3» or  can leave 

the network entirely. 

^f 
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Figure 3-3 

Terminal Feedback 

Whenever such branch points appear in a network diagram 

it will be assumed that each particular path has associated 

with it a fixed probability and that, whenever a customer 

leaves the service facility, he selects the next path accord- 

ing to  these probabilities independently of the choices that 

he or other customers may have made in the past.  Naturally 

the sum of the probabilities associated with the different 

paths leaving a single service facility must be equal to one. 

Figure 3-4 provides another example of multiple paths 

leaving a service facility.  For notatlonal simplicity only 

a single line is shown leaving each facility and the branch- 

ing into separate paths appears further on. 

K> K> *-»r TO 

Figure 3-4 

Internal Feedback 
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Using these notational conventions the general network 

model of J.R. Jackson  (47) Is Illustrated In Figure 3-5. 

There are an arbitrary number of service facilities (three 

are shown ) ,   each facility has an arbitrary number of 

Identical parallel servers, and a customer may proceed to 

any service facility In the network after completing service 

at any given facility.  In addition, new customers may 

enter the system via any queue and may leave the system at 

the completion of service at any facility. 

foffi M—K^ 
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Figure 3-5 

Arbitrarily Connected Queuelng Network 

Limitations on Network Capacity 

In the work of O'Brien, R.R.P. Jackson and J.R. Jackson 

presented thus far, no limits are placed on the lengths of 

any of the queues appearing In the network diagrams.  One 

method of Imposing such limits Is to construct a closed net- 
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work having the property that customers can neither enter 

nor leave.  If such a network Is then Initialized with a 

given number of customers, these customers will circulate 

through the network Indefinitely so that the number of 

customers In the network will not only be bounded but will 

In fact be constant. 

Koenlgsberg (58) Introduced a closed system of a par- 

ticularly simple form which he termed a cyclic queue. 

Koenlgsberg's model Is represented In Figure 3-6 for the 

case In which there are four service facilities.  Actually 

Koenlgsberg solved this model for an arbitrary number of 

service facilities and an arbitrary number of circulating 

customers.  It is assumed in Figure 3-6 that each queue in 

the network has capacity equal to the total number of cir- 

culating customers. 

^ K)—*CZZK)—*CZZK> 

Figure 3-6 

Cyclic Queue 

Finch (37) adopted a slightly different approach by 

considering situations in which the total number of customers 

is bounded by some value but not restricted to always remain 

equal to that value.  Finch analyzed both the terminal feed- 
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back networks of Figure 3-3 and the internal feedback net- 

works of Figure 3-^«  In both cases Finch assumed that the 

arrival process shut down whenever the total number of cus- 

tomers in the network reached some upper bound N.  That is, 

rather than assuming a stationary arrival process Finch 

assumed the arrival process was a function of K, the total 

number of customers in the network.  For K <N the arrival 

process was assumed to be Poisson with constant mean rate, 

and for K ^ N  the arrival process was assumed to be Folsson 

with mean rate zero (I.e., no customers arrive). 
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GENERAL NETWORK MODELS 

The Work of J.R. Jackson 

In an impressively comprehensive paper J.R. Jackson 

(48)  combined his earlier work with some ideas from Finch 

(37)  and then went on to develop a solution technique for 

an extremely wide class of queueing networks.  Jackson begins 

by considering the totally general model of inter-connecting 

paths illustrated in Figure 3-5.  To this he adds Finch's 

notion of allowing the mean arrival rate to be a function of 

K, the total number of customers in the system.  Working 

under the assumption of a non-stationary Polsson arrival 

process, Jackson then directs his attention to the case where 

the mean arrival rate is an arbitrary function of K.  In con- 

trast. Finch considers only the case where the mean arrival 

rate is  given by a simple step function equal to u if K<N 

and equal to 0 if K±N. 

In the networks considered by Finch customers may only 

arrive at a single point as illustrated in Figures 3-3 and 

3-4.  Jackson on the other hand must contend with the possi- 

bility of customers arriving at any point as illustrated 

in Figure 3-5.  To deal with this situation Jackson first 

assumes that the total arrival rate for the system is some 

arbitrary function A(K).  He then assumes that arriving 

customers ent»r the system at service facility n with fixed 
N 

probability r(0,n)  ( *>' r(0,n) = 1 where N is the number 
n=l 
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of service facilities in the system).  Thus the mean arrival 

rate to the n— service facility in Jackson's model is 

A(K).r(0,n). 

Jackson also generalizes the notion of parallel servers 

at a service facility to include arbitrary exponential ser- 

vice.  That is, when k customers are present at service 

facility n Jackson assumes only that the service time is 

exponentially distributed with mean rate u(n,k).  As pre- 

viously pointed out, if the n— service facility consists 

of p exponential servers in parallel each having mean rate 

u ,  and If there are k customers present at the facility, 

then the service time is distributed exponentially with 

mean rate u-mln(p.k).  Jackson's more general approach is 

to simply specify the mean rate by some arbitrary function 

u(n,k). 

In addition to this synthesis and generalization of 

earlier work Jackson also introduces new mechanisms Into 

his model which allow him to Include closed networks such 

as those considered by Koenigsberg as a special case.  The 

first mechanism Is termed triggered arrivals.  In a system 

with triggered arrivals It is assumed that there exists a 

positive integer K* which serves as a lower bound on the 

total number of customers present.  That is, whenever the 

total number of customers in the system is equal to K» and 

a customer exits, a new customer Is Immediately Injected 

Into the system.  The probability that this new customer 
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will arrive at service facility n is equal to r(0,n) for 

n=l,2,...,N .  Clearly, if a triggered arrival system is 

constructed so that PUK) • 0 if and only if K * K*    then 

the resulting system can be interpreted as a closed queueing 

network with K* circulating customers.  Koenigsberg's model 

thus becomes a highly specialized example of such a system. 

Another mechanism which Jackson treats in this paper 

is known as service deletion.  Under this mechanism it is 

assumed that associated with each service facility there Is 
* 

a positive Integer k which acts as an upper bound on the 

number of customers that can be present at the facility. 

If the number of customers present at service facility n 
* 

is equal to k and a new cutomer arrives* the customer 

currently being served Is immediately ejected and then pro- 

ceeds to his next destination according to the same set of 

probabilities that govern normal departures.  Since service 

times are exponentially distributed and thus "memoryless", 

it is equivalent to assume in this case that the arriving 

customer, rather than the customer being served, is the one 

that is ejected from the service facility.  Jackson thus 

provides one possible mechanism for limiting the size of 

queues in a network. 

It should be pointed out that Jackson does not present 

explicit closed form solutions for the queueing networks he 

considers.  Instead he presents a solution technique for 

solving the large set of homogeneous linear equations asso- 
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elated with the Markov process which characterizes the net- 

works.  The solution technique, which Is Is more fully ex- 

plained In Appendix Bt Involves solving a considerably 

smaller set of linear equations and then constructing the 

solution to the larger set of equations In a certain well 

defined manner.  This greatly reduces the effort Involved 

In solving specific problems and, In addition, demonstrates 

the existence of a number of structural properties which all 

solutions must possess.  However Jackson's work does not 

entirely supersede the explicit closed form solutions ob- 

tained by Koenlgsberg, Finch and others. 

The Work of W. J. Gordon and G.F. Newell 

The work of Gordon and Newell {'41)   Illustrates how a 

particular subcase of Jackson's work may be profitably ex- 

plored.  Gordon and Newell consider queuelng networks with 

completely general inter-connecting paths as illustrated in 

Figure 3-5t except that only closed systems are examined so 

there is no possibility of customers either arriving or 

departing. 

In a sense this model represents a natural generaliza- 

tion of closed cyclic networks considered by Koenlgsberg, 

whereas Jackson's model C18) represents a generalization of 

the open network model (^7) he considered earlier.  The 

mechanism of triggered arrivals then allows Jackson to in- 

clude closed networks such as those of Koenlgsberg as a 

73 



special case.  Despite its elegant generality this treatment 

is somewhat cumbersome, and so in practice it is far simpler 

to follow the notation and equations of Gordon and Newell 

when solving problems which are initially defined in terms 

of closed networks.  The solution technique presented in 

Appendix B closely parallels the derivation which Gordon and 

Newell present. 

After re-deriving Jackson's equations in a specialized 

form Gordon and Newell go on to explore the asymptotic 

behavior of closed systems as the number of circulating 

customers becomes very large. This aspect of their work is 

entirely new and lends further interest to the paper. 

In a second paper published the same year Gordon and 

Newell (42) consider a network of cyclio queues of the type 

illustrated in Figure 3-6 with the additional restriction 

that the maximum queue length which can build up at a service 

facility is less than the total number of circulating cus- 

tomers. When a queue reaches its maximum permissible length, 

it is assumed that the service facility which feeds into that 

queue becomes blocked or in effect shuts down.  In contrast 

the service deletion mechanism of Jackson (48) would Imply 

in this case that, when a queue reached its maximum length, 

customers departing from the service facility which feeds 

into that queue would simply bypass it and proceed directly 

•Gordon and Newell were unaware of the earlier work of 
Jackson (48) as indicated in (43). 
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to the next service facility In the cycle. 

The Induced blocking mechanism considered by Gordon and 

Newell is thus quite different from the service deletion 

mechanism of Jackson.  Unfortunately the equilibrium equa- 

tions for this problem turn out to be rather complex, and as 

a result explicit closed form solutions are obtained only 

for the case of a cyclic network of two queues.  In addition 

the limiting behavior of such systems when the number of 

customers is small (I.e., when there is a low probability of 

a queue reaching its maximum length) and when the number of 

customers is large (i.e., when there is a high probability 

of a queue reaching its maximum length)  is explored. 

The problem of limited size queues with Induced block- 

ing also proved difficult to treat in the case of queues in 

series as illustrated in Figure 3-1.  Hunt (46) considers 

such a system but is able to derive solutions only for the 

case of two queues with the second having arbitrary finite 

capacity, and the case of three queues with the second and 

third having a capacity of one.  The rather limited success 

of these efforts suggests that this Is a difficult problem 

to treat in general.  However the close parallel between the 

induced blocking mechanism and the behavior of computer 

systems when memory becomes saturated should provide strong 

motivation for additional research in this area. 
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CHAPTER k:      INTRODUCTION TO THE 
CENTRAL SERVER MODEL 

SPECIFICATION OF THE MODEL 

Individual Program Behavior 

One method of constructing a mathematical model of a 

complex physical system Is to first analyze a particular 

component of the system in relative isolation and to then 

gradually introduce additional detail.  In the case of multi- 

programming systems  it Is convenient to begin this process 

by analyzing the behavior of an individual program running 

in a slightly simplified multiprogramming environment.  It 

will be assumed that programs enter this environment by 

being loaded Into main memory from a device such as a disk 

or card reader.  Once loaded, a program presents the CPU 

with a sequence of instructions to be executed.  Scattered 

through this sequence are a number of I/O transfer requests 

which, when encountered, cause the CPU to suspend instruction 

processing for the duration of the transfer.  After a trans- 

fer has been completed  a new interval of CPU processing 

begins, then another interval of I/O processing, and so on 

until the CPU eventually encounters a symbolic STOP state- 

ment.  This terminates the program and causes it to exit 

from the system. 

Now consider the effect of a multiprogramming environ- 

ment on the preceding description of individual program 
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behavior.  Since all multiprogramming environments are 

designed to maintain a number of programs In the active 

state at all times. It Is possible for a program In such 

an environment to request service from a processor at a 

time when that processor Is already busy serving some 

other program.  Such overlapping requests for service will 

cause queues to build up from time to time at the various 

processors In the system. 

Taking this additional consideration Into account, 

program behavior Is thus characterized by a period of 

Initial loading followed by alternating Intervals of CPU 

processing and I/O processing with each processing Interval 

possibly preceded by a queuelng delay, and eventually a 

final period of CPU processing after which the program 

exits from the system.  This general behavior pattern Is 

represented schematically in Figure *J—1 for a system in 

which programs are initially loaded from a card reader and 

may then carry out I/O processing on a disk, magnetic tape 

and data cell.  Mote that the behavior of any program in 

such a system can be described by a continuous path through 

this diagram beginning at the card reader and ending at the 

exit arrow.  The exact structure of the program behavior 

path, as well as the amount of time required to service 

each processing request, will vary from program to program 

and is left unspecified.  The time a program spends waiting 

In queues depends not on the program Itself but on the 
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activity of the other programs In the system.  This too Is 

left unspecified. 

The circles labeled DISK, MAG TAPE and DATA CELL In 

Figure 4-1 are not Intended to represent Individual devices. 

Instead they represent Individual peripheral processors, each 

capable of controlling a number of physical devices but each 

having the property of being able to carry out only one I/O 

transfer at a time.  Thus a peripheral processor might corres- 

pond to a data channel combined with a device controller 

which is connected to several disk or magnetic tape drives. 

Note that even though each program normally has its own set 

of dedicated tape drives, it is presumed in Figure 4-1 that 

there Is only one data channel/controller for all the tape 

drives in the system.  Hence the magnetic tape processor is 

depicted as a shared resource subject to queuelng delays 

in the same way that the disk and data cell are. 

System Behavior 

The model of program behavior represented in Figure 4-1 

can be converted to a model of system behavior for an entire 

class of multiprogramming systems by making a few relatively 

minor alterations.  First of all, rather than considering the 

processing requests generated by a particular program It is 

Instead necessary to consider the processing requests gener- 

ated by a particular memory partition in a multiprogramming 

system.  This change affects the way in whicb program 
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terminations are represented.  When a program encounters a 

symbolic STOP statement it simply exits from the system as 

indioated in Figure fc-1. However, the partition in which 

the program resided does not exit but is instead loaded 

with the next program awaiting execution. Thus, from the 

point of riew of the memory partition, the termination of 

one program is followed by the loading of another. 

In order to represent this phenomenon let the activ- 

ity of a particular memory partition be described by a marker 

moving about the diagram in Figure k-2.    The location of 

the marker will correspond to the state of the program in 

the associated partition:  either waiting in a queue or re- 

ceiving service from a processor. When the CPU encounters 

a symbolic STOP statement and the program terminates, assume 

that the marker moves out along the NEW PROGRAM path leaving 

the CPU. The marker will then immediately return to the 

CPU queue, this time representing the first CPU process- 

ing request of the next program. Actually the first few 

processing requests the marker generates at this point will 

not correspond to the next program itself but rather to the 

processing aotivity required to load the next program Into 

the partition.  However, this processing aotivity will be 

regarded as a part of the next program for purposes of 

this discussion. 

The model can now be extended to Include the behavior 

of an entire multiprogramming system simply by assuming 
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that each memory partition in the system is represented by 

a different marker moving about the diagram in Figure 4-2. 

Note that only one marker can occupy a processor at any 

time, but any number of markers can occupy the queue assoc- 

iated with a given processor.  Under these conventions the 

movement of markers along the paths of Figure 4-2 can be 

seen to correspond in a natural way to the operation of an 

actual multiprogramming system. 

Multiprogramming systems which can be represented In 

this manner must satisfy certain restrictions.  First of all, 

the number of main memory partitions in the system being 

modeled (i.e., the degree of multiprogramming) must be 

constant since there is no way of either adding or deleting 

markers In Figure 4-2.  In addition, an Individual program 

cannot undergo concurrent processing on more than one 

processor at a time because only one marker is associated 

with each program.  Finally, the system must be operating 

under conditions of full load since it Is assumed that there 

is always a new program ready to begin processing when a 

currently active program terminates. Note that these 

restrictions do not Interfere with the primary objective 

of the model which is to represent cases In which a number 

of active programs are present in a single system at the 

same time.  Since this state of affairs is usually regard- 

ed as the most significant aspect of any multiprogramming 

environment, the three restrictions Just cited do not 

81 



prevent the model from being of both practical and 

theoretical interest. 

Behavior Parameters 

Figure *J—2 cannot be regarded as a complete description 

of a multiprogramming model because it does not specify the 

nature of the paths that markers follow as they move about 

the diagram or the amount of time that markers spend at each 

processor they encounter. These two factors correspond to 

the sequence of I/O processing requests generated by a 

program and the amount of time necessary to service individ- 

ual CPU and I/O processing requests. 

There are a number of ways in which the sequence of 

I/O requests generated by a program can be specified. For 

example, it is possible to observe an actual system over a 

period of time, note in detail the path followed by each 

program, and then Include all this information In the model. 

This representation would be entirely accurate but would 

result In an unwieldy model since a vast number of param- 

eters would be necessary to permit this Information to be 

encoded.  It is thus essential to develop a more concise 

representation of program behavior, even if this entails 

some sacrifice in the fidelity of representation of the 

final model. 

To see how this might be done imagine that an actual 

system is observed for some period of time, but assume that 
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the only Information collected Is the relative frequencies 

with which various paths are selected by programs completing 

CPU processing requests.  A typical set of such data for 

the system represented In Figure 4-2 Is presented In Table 

4-1. 

Path Designation Relative Frequency 

NEW PROGRAM path 1 In 20 

Path to DISK 9 In 20 

Path to MAG TAPE 5 In 20 

Path to DATA CELL 2 In 20 

Path to CARD READER 3 In 20 

Table 4-1 

Relative Frequency with which Programs Completing CPU Pro- 

cessing Requests Select Various Paths 

To a certain extent the program behavior paths which 

generated this  data can be reconstructed by assuming In 

Figure 4-2 that whenever a marker leaves the CPU Its next 

path Is determined by probabilities which correspond to the 

relative frequencies In Table 4-1.  That Is, assume that 

each time a marker leaves the CPU the probability of Its 

selecting the NEW PROGRAM path Is 1/20, the probability of 

Its selecting the path to DISK Is 9/20, and so on.  A system 
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operating In this manner clearly will, In the long run, 

utilize Its peripheral processors with the same relative 

frequency as the observed system.  In addition. Individual 

program behavior will exhibit considerable variability 

since the total number of processing requests per program 

and the sequence of processing requests within each program 

are both determined by random factors.  Thus, even though 

the exact details of specific program behavior are lost 

under these assumptions, a substantial link with reality Is 

maintained.  Furthermore the number of parameters necessary 

to specify program behavior is significantly reduced since 

only the path selection probabilities need be supplied. 

Specifying the amount of time a marker spends at each 

processor is a more difficult problem.  In actual multipro- 

gramming systems the amount of service time per processing 

request is likely to be a rather complex function which 

differs from one processor to another.  It is of course 

possible to observe an actual system and empirically obtain 

the distribution of service times for each processor.  These 

empirical distributions could then be approximated by con- 

tinuous functions and the service time for each processor 

could then be specified as a random variable having the 

associated continuous distribution function. 

There are two major drawbacks to this approach.  First 

of all, analysis of queueing networks of the type illustrated 

in Figure k-2  for arbitrarily distributed service times Is 
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almost certain to lead to a mathematically intractable 

situation.  Second, and in some sense equally as important, 

a set of continuous distribution functions fitted to some 

arbitrary body of data would be an extremely awkward collec- 

tion of parameters to incorporate into a model, especially 

if the effects of parameter variation were being explored 

with the aim of generalizing to other systems.  Thus, as in 

the case of program behavior paths. It is again necessary 

to seek a more concise and mathematically tractable repre- 

sentation, even at the expense of sacrificing fidelity of 

representation in the final model. 

There are two features of the actual service time 

distributions which seem especially critical and which will 

be incorporated In the model.  The first is that each pro- 

cessing request directed to a given processor is likely to 

require a different amount of time for Its completion.  That 

is, the service times associated with a given processor are 

not all Identical but instead vary from one request to 

another.  When these variations are averaged together, a 

second important feature becomes apparent which is that the 

average amount of service time per processing request is not 

necessarily the same for each processor in the system. 

Assume that the average amount of service time per pro- 

ceasing request Is l/uQ for the CPU and 1/u. for the J— PPU. 

Prom a mathematical standpoint the simplest way to incor- 

porate these parameters into the model, while also including 
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variability In the individual service times of each processor, 

is to assume that the service time per processing request for 
* 

the CPU is an exponentially distributed random variable with 

mean 1/u and that the service time per processing request 

for the J~ PPU is an exponentially distributed random vari- 

able with mean l/u.. Note that it is not being asserted that 

these exponential distributions provide an entirely accurate 

representation of the actual service time functions, but 

only that they Include the most significant aspects of these 

functions. The point is that the model should not be Judged 

on the goodness-of-fit of the exponential assumptions, but 

rather on the validity and utility of the Insights which are 

ultimately derived. 

Summary Description of the Model 

The final model, which is represented schematically in 

Figure 4-3, may be described In the conventional terminology 

of queueing theory as a closed queueing network of L+l expo- 

nential servers and N circulating customers.  Customers 

leaving the o— (central) server proceed to the y& server 

with probability p. (J«0,1,...,L) ,  and customers leaving 

one of the L peripheral servers proceed directly to the 

central server with probability one.  The parameters of the 

•Appendix A contains a detailed discussion of the most sig- 
nificant features of exponentially distributed random vari- 
ables. 
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system are: 

N - number of circulating customers (i.e., degree of 

multiprogramming) 

L - number of peripheral servers 
Mi 

p. - probability that a customer proceeds to the J— 

server after leaving the central server (j=0,l, 

...»L) 

u.  - mean rate of the i— server (J*0,1,...,L) 
J 

1/u is the average time required to complete a 

service request on the J^— server, and the proba- 

bility that a service request on the J— server 

has length * T is 

T 

5 u, e^i* dt 
0 x 

For purposes of this discussion the class of queuelng 

networks which satisfy the preceding description will be 

known as central server networks and the models based on 

these networks will be known as central server models. The 

o— (central) server in a central server network will be 
feh 

referred to as the CPU and the J— (peripheral) server in 

a central server network will be referred to as the J~ PPU. 
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ELEMENTARY PROPERTIES 

Introduction 

The primary reason for developing the central server 

model of multiprogramming Is to gain some understanding of 

the nature of the queueing delays which arise In multipro- 

gramming systems.  Before analyzing this aspect of the model 

certain other properties will be considered which are In a 

sense more elementary in that they are Independent of queue- 

ing delays and can be derived without considering the steady 

state distribution of customers in the network.  These prop- 

erties,  which have to do with the distribution of the number 

of processing requests per program and the total processing 

time per program, will help to further Introduce the model 

and will also be of some practical use later in the analysis. 

Table 4-2 (p. 98) provides a convenient summary of the main 

results of this section. 

Distribution of Processing Requests 

To begin the analysis recall that each time a program 

completes a CPU processing request the probability that the 

NEW PROGRAM path will be selected is p .  Since selection of 

the NEW PROGRAM path corresponds to termination of a program, 

it is relatively simple to obtain the distribution of CPU 

processing requests per program. 
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Suppose a program has Just been loaded into main memory. 

The probability that the program will make exactly one re- 

quest for CPU processing is the probability that It termi- 

nates (i.e., selects the NEW PROGRAM path) immediately after 

completing its first CPU processing request. According to 

the model the probability of this happening is p . Similarly, 

a program making exactly two requests for CPU processing 

must select a path other than the NEW PROGRAM path after its 

first CPU processing request - an event whloh occurs with 

probability l-pQ - and then select the NEW PROGRAM path after 

its second CPU processing request. Thus the probability of 

a program making exactly two CPU processing requests is 

In general a program which makes exactly n requests for 

CPU processing must select a path other than the NEW PROGRAM 

path n-1 consecutive times and then select the NEW PROGRAM 

path the n— time.  Since each path selection decision is 

independent of all other decisions, the probability that 
n  1 

this event will occur is (1-PQ)  P0 •  and thus the expected 

number of CPU processing requests per program is 

ZIn pft (1-Pft)
n"1 - l/po *-l £-   o    o o 

Obtaining the number of PPU processing requests per 

program is a bit more complicated.  Consider the probability 

that a program makes exactly n requests for processing from 
fell the J— PPU, and suppose for the moment that the total number 
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of CPU processing requests made by the program is C+l.  That 

is, after each of the first C requests for CPU service the 

program selects a path to a PPU  - possibly the J— one - 

and after the C+l2- request the program terminates by select- 

ing the NEW PROGRAM path.  Note that if this program is to 
t-Vi 

make a total of n requests for service from the J— PPU it 

is necessary to have C £ n. 

Consider the first C requests for CPU processing.  After 

n of them the program must select the J— PPU, and after C-n 

of them the program must select a PPU other than the J—. 

Since the NEW PROGRAM path cannot be selected during this 

period, the probability of selecting a PPU other than the 

J— is (l-p0-pj  and the probability of selecting the J~ 

PPU remains p..  It then follows that the probability of 

making n consecutive requests for service from the J— PPU 

followed by C-n consecutive requests for service from a PPU 

other than the J— is p. (1-p-p*) " • 

Of course there is no reason in this case to require 

that the n requests for service from the J— PPU precede the 

C-n other requests, and in fact any ordering of these C re- 

quests is legitimate as long as exactly n requests for 

service from the J— PPU occur.  Since the total number of 

such orderings is [*jj and the probability of obtaining any 

particular ordering is p. (l-P0«-pJ "  t  the probability 

that there will be n requests for the J— PPU somewhere 

among the first C requests for PPU processing is 
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J jp, (1-p -p*)   • Since It is also being assumed that the 

program makes exactly C+l requests for CPU service, It Is 

necessary to multiply this expression by p which Is the pro- 

bability that the NEW PROGRAM path will be selected after the 
st next (i.e., the C+l—) CPU processing request. Thus the pro- 

bability that a program makes C+l requests for CPU serrioe 
feh 

and n requests for service from the J— PPU is 

Po(SK<l-Po-p/-n- 
To obtain the probability that a program makes exactly 

n requests for service from the J^— PPU irrespective of the 

number of requests it makes for CPU service, it is necessary 

to sum the preceding expression over all values of C for 

which n requests for service from the J— PPU are possible 

(i.e., for C=n). Thus the probability a program makes n 

requests for service from the J— PPU is 

^ _ . n 
oo 

On flKw-v,^ " i&(5&)        *-2 

•Equation k-2  follows from the observation that 
QO 

Can 

(Cj j0-n , 1/(1.x)n»l 

for 0<x<l.  This result can be derived by differentiating 
both sides of the equation 

HxC - l/(l-x) 
C=0 

n times with respect to x and then dividing through by n! 
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From this expression It Is possible to obtain the expected 

number of requests for service from the J— PPU as 

'•-o       p   / p, \n 

i= - v*7(v*j)   • > A, 
Note that the summation in equation k-J  begins with n>=0 

since it is possible for a program to make no requests for 

service from the J— PPU.  On the other hand the summation 

in equation 4-1 begins with n=l since each program must make 

at least one request for CPU processing. 

One of the implications of equation 4-3 Is that the 

total expected number of PPU processing requests per program 

is    si P/p0 = ± z: p. - J- d-p0) = — -1       ^ 
J=l  °  °  po J=l  J  po    °   po 

This makes sense Intuitively since the total expected number 

of CPU processing requests per program is l/pQ and since, in 

any program, the number of PPU processing requests is one less 

than the number of CPU processing requests. 

Distribution of Total Processing Time 

Now that the distribution of the number of processing 

requests per program has been obtained for each server it 

is possible to obtain the distribution of total processing 

time per program. Again it is simpler to begin with the CPU 

Clearly the probability that the total CPU processing time 

per program is less than or equal to t Is the probability 
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that a program requires exactly one CPU processing Interval 

times the probability that this Interval Is less than or 

equal to t plus the probability that a program requires 

exactly two CPU processing Intervals times the probability 

that the sum of these two Intervals Is less than or equal to 

t and so on.  If D (t) Is the probability that the sum of 

n CPU processing Intervals Is less than or equal to t and 

DT(t) Is the probability that the total CPU processing time 

per program Is less than or equal to t, then the preceding 

sentence may be expressed more concisely as 

D-(t) - II P0(l-P0)
n"1D (t) 4-5 1 n«l °   °    n 

Taking the Laplace-StleltJes transform of both sides. 

Since the CPU processing Intervals are Independent and 

Identically distributed random variables. It follows from 

one of the elementary properties of Laplace-StleltJes 

transforms that 

Ln (s) « (Lo (s))
n 

Hence 

L^L) -^P0tl-P0
)n"1(LD1

(B,)n 

Po \{s) 

" 1 - <l-po) L^C) 

9^ 



Since CPU processing intervals are exponentially distributed 

with mean l/u 

Dl(t) • >o e ° «" 

Thus LD (s) -jc e~
ST 

)0 c   uwl' 

,°«> u -st    -u t ,.      o :(     e   u e o dt » Jo      o u +s o 
Substituting,     u 

°o 
LD <•> -   V8        =  Uopo 4-6 

T u      u p +s 
1 - (1-po)u^r? o 

As can be readily verified, the inversion of equation 4-6 

yields 

DT(t) =io Vo e"U°P°X dx 

That is, the total amount of CPU processing time per pro- 

1 gram is an exponentially distributed random with mean u p o*o 

A similar argument can be used to determine the distri- 

bution of the total amount of processing time per program on 

the J— PPU.  The major difference la that it is now possible 

- with probability p /(p +p,) - for a program to make no 

requests for processing on the J— PPU during the course of 

its execution.  Hence the formula corresponding to equation 

4-5 for the J— PPU is 

D_(t) = -ilfi— + ^-_io_/lZi-T D (t)     4-7 
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Note that when equation k-7  is evaluated at t»0 the result- 

ing probability value is PQ/(p +pJ. This is the probability 

that the total processing time per program on the J~ PPU is 

equal to zero.  Hence the probability that the total pro- 

cessing time is less than or equal to t always includes the 

term P0/(pQ+pJ . 

Taking the Laplaoe-StieltJes transform of equation JJ—7 

n 
CxS 

L "(a) 
T Vpj n^T Vpj 

'1 
po+pJ 

I^C.) 

J^fj. 
I - 
Vpj -i 

Lj, (.) 

fell 
Since service Intervals on the J» PPU are exponentially 

distributed with mean 1/u., it follows that 

Dj(t) - JJ Uj e"V dx 

and      L~   (s) uJ+s 

Thus    Lj.  (s) 
UT 

VpJ 
1 - ^Jll 

P0+Pj  UJ+S 
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U
JPQ+PQ

S 

ujVpos+pJs 

po+Pj 

"  u3po 

VPj 

Po+pJ 

Po+pJ 

Inverting, 

DT(t) 
pJ 

Po+Pj 

U
JPQ 

I 
po+Pj 

-
U
JPQ 

Po+Pj dx 
po+Pj 

4-8 

Put into words, equation ^-8 expresses the fact that the 

total processing tine per program on the J— PPU is zero with 

probability p /(p +pJ and, with probability Pi/(P0+Pi) t  is 

exponentially distributed with mean  (pQ+P^Au.p ).  Thus 

the expected processing time per program on the J— PPU is 

PJ PO
+
PJ 

p +p . u .p o ^J   J^o Po+Pj 

PJ 
ujPo 

The results derived in this seotion are summarized in 

Table Jf-2.  There is a sense in which these results should 

not be considered as consequences of the central server 

model but rather as additional assumptions about program 

behavior which are implicit in the model.  To elaborate upon 

this point, recall that the underlying purpose behind the 

central server model is to gain insight Into the nature of 

the queueing delays which arise in multiprogramming systems. 
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Instead of applying the model to this problem, the work of 

this section has been devoted to studying the behavior of 

programs operating in systems which satisfy the basic assump- 

tions of the model. 

Now, the basic assumptions of the model regarding pro- 

gram behavior were assumed to be sufficiently realistic to 

permit the model to be of value in exploring the effect of 

queueing delays on system performance.  However, this does 

not imply that these assumptions are sufficiently realistic 

to permit the model to be of value in further exploring 

program behavior itself.  Hence these derived results should 

not be Interpreted as intrinsically useful information about 

program behavior in actual systems.  Instead they should be 

regarded as additional constraints on program behavior which 

systems represented by the model must to some extent satisfy. 

This point is certainly not a major one, but it may help to 

clarify the relationship between this section and the remain- 

der of the thesis. 
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CHAPTER 5: THE STEADY STATE DISTRIBUTION 
AND ITS PROPERTIES 

ANALYTIC EXPRESSIONS 

Derivation of the Steady State Distribution 

Steady state distributions were discussed In general 

terms in Chapter 2.  Chapter 3 then reviewed a number of 

specific queueing networks for which steady state distribu- 

tions have been explicitly obtained.  Central server networks 

were not included in this discussion since the literature 

contains no specific references to networks of this type. 

However, central server networks fall within the general 

class of queueing systems analyzed by Jackson (48)  and 

Gordon and Newell (^1), and hence it is possible to use the 
* 

solution technique developed by these authors to obtain 

the steady state distribution for this particular network 

type. 

To apply the solution technique outlined in Appendix B 

to a specific queueing network It is first necessary to 

specify the matrix P • (Pji)  where p. . is the probability 

that a customer leaving the 1— server will proceed to the 

J— server.  For central server networks the matrix P Is 

defined as follows: 

•This technique is reviewed in Appendix B, 
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p = 

1 

1 

Pi 
0 

0 

P2 
0 

0 

0 

0 5-1 

0 

The next step Is to determine the solution of the 

equation y = y-P   (I.e., equation B-7 of Appendix B). 

Given a matrix of the form specified In equation 5-1. It Is 

easily verified that the vector  y = (y^.p.. y^.Poy^. • • • .PT JO —       O   X O   C,    O        i_iO 

satisfies the equation y • y-P  for any value of y .  In 

particular the vector y » (u .p.,u tp«u ,. .. tpTu )  satis- 

fles this equation. 

Next let P(n .n..,... ,nT )  denote the steady state prob- 
O   A Li 

ability that there are n. customers at the J— server In 

a central server network.  It then follows Immediately from 

equation B-8 that 

L 

'(n0«ni n
L
} - am "J£ (y/Vnj 

1   L 5-2 

where G(N) Is a normalizing constant.  Note that the multi- 

plicative Index j can begin at 1 since  y /u = u /u  =1. 
o  o   o o 

The normalizing constant G(N) Is selected so that the 

sum of all the P(n ,n.,...,n,) will be equal to one.  Since 
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L 
any value of P(nn,n1,... ,nT ) for which >  n. = N repre- 

aents a possible state of the system* it follows that 

'juo'uJ' G(N) « >    77 (p,u>,)nj 

T^n.-N 
J=0 J 

>    ft (f)V«j'nl 5-3 

> n,*N 

Note that neither n nor p appears on the right hand 

sides of equations 5-2 and 5-3 although it is of course 
L L 

understood that n » N->  n.  and  p • 1 - >  p. . 
°      I^T J °        >r J 

Equations 5-2 and 5-3 are also valid for central server 

networks in which the NEW PROGRAM loop is missing since 

such networks simply correspond to the case in which 
L 

p = 0  and  5_ p. » 1. 
° j»l  J 

Part of the value of central server networks is the 

extreme simplicity with which the solution to the equation 

y » y-P   can be expressed.  This simplicity makes it 

possible to analyze the steady state distribution in detail 

and to derive a number of related properties which are 

valid for all central server networks but which are not 

necessarily valid for the more general networks studied 

by Jackson and by Gordon and Newell.  The next few sections 
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deal with some of these properties. 

Processor Utilization 

Let A, denote the steady state probability that the 

J— processor is active (I.e., not Idle). Since the J— 

processor Is active If and only if n, ^ 1 

A. - >  P(n/N,n1, ... ,nT ) J  n =1  ° X L 

In particular, 

Art = >      P(n/N,n1 n- ) 0      n>l      °    * ** o 

Since    n    ^  1     implies    >     n.   4 N-l 0 1=1    1 

Ao ^> P(no,nlt...,nL) 

>n>N-l 
i«l  X 

>      skr jr^yy"! 
>   n>N-l 
1=1  x 

G(N) 5^ 
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For  J-1,2,...tL 

A. = J>_ P(n  ,n1,. .. ,nT ) J      n.=l       °    1 L 

>      Gnrr1T^iVui^ 
L 
> n,=N & n,=l 
1=1 x J 

Factoring out the quantity p.u /u, which appears in each 

term of the sum as a result of the fact that n,=l , 

*j - GOT ^7 >       jr (vA'"1 

1=1 x 

, l^SL  G(N-l) 
U,   G(N) 

p.u 
A. Uj   o 

Thus 

VoPj " AJuj 5"5 

Conservation Laws 

Equation 5-5 has an interesting intuitive interpreta- 

tion.  Suppose that a central server network in equilibrium 

is observed for some interval of time of length T.  Then 

the expected amount of time that the central server is 
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aotive during this interval Is AT.  Since the average 

amount of time required to process a customer through the 

central server is 1/u , the expected number of customers 

processed by the central server during the interval is 

A T/(l/u ) = A Tu . Next note that each customer processed o     o    o o 

by the central server has probability p, of being channeled 

to the J— peripheral server.  Thus the expected number of 

customers channeled to the J— peripheral server during the 

Interval is A Tu p.. o o^j 

On the other hand the expected amount of time that 

the J— peripheral server is active during the Interval la 

A.T, and so the expected number of customers processed by 

that server during the interval is A,T/(l/uJ • A.Tu..  If 

T is large and the system is in equilibrium, then conserva- 

tion of flow considerations would indloate that the number 

of customers channeled to the J— peripheral server should 

equal the number of customers processed by that server.  In 

other words A Tu p, should equal A/Tu. .  This is equiva- 

lent to stating that A up • A.u..  Since equation 5-5 

may be obtained in this manner using conservation of flow 

considerations, this equation will be referred to as the 

Conservation Law for the remainder of this discussion. 

In order to discuss one of the applications of the 

Conservation Law it is necessary to introduce the notion of 

the relative saturation of a server in a central server net- 

work.  Essentially, relative saturation is the ratio between 
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the relative load on the server and the server's processing 

speed.  If the relative load on the central server is defined 

as 1, then the relative load on the j— peripheral server 

will be p. since, over a long period of time, the ratio of 

the number of customers processed by the central server to 

the number of customers processed by the j— peripheral 

server will approach 1/p*.  Hence the relative saturation 

of the J— peripheral server will be defined as p./u.  and 

the relative saturation of the central server will be de- 

fined as 1/u . o 

Next note that the Conservation Law can be reformulated 

as follows: 

_^o. *1     A2 ^L 6 
l/uQ " Pl/ux  p2/u2        pL/uL 

It Is immediately obvious from equation 5-6 that the most 

highly saturated server is always the most highly utilized 

server and that equally saturated servers will be equally 

utilized.  In fact utilization is directly proportional 

to relative saturation.  It is also true that the most 

highly saturated - and highly utilized - server has the 

largest expected queue, but the proof of this fact will be 

deferred until later. 

Before discussing the issue of expected queue lengths 

it is useful to introduce a powerful generalization of the 

Conservation Law.  Begin by defining A. as the steady state 

probability that there are k or more customers present at 
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the y& server. Note that A° » 1 and, according to the 

earlier definition of A*. A. « A. . 

Now, AQ = \ P(nQlnlt...,nL) 
n =k o 

Since n    4 k Is  equivalent  to >      n.   * N-k  , 
° 1=1     1 

> GTNT]X(PlVUl)ni 

1»1 
n^N-k 

G(N-k) 
G(N) 5-7 

For J-1,2,...,L 

A 5=2 P*no,nl nL* 

1-1 
njAN * n.*k 

>   GHJT Jt '"iW"1 

1=1 
n^N &  n.*k 

Faotoring out the quantity (P«U0/
UJ  which appears In each 

term of the sum as a result of the fact that n. * k , 
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A"  = 1 
GTNT u. 

It 

T J[ ip,»A»n' 

1=1 
n^N-k 

p,u r° 
u 

J J 
G(N) 

p*u ro 
u 5-8 

Equation 5-8 may be thought of as a generalization of 

equation 5-5 since the latter can be derived from the former 

by setting k»l.  For this reason equation 5-8 will be re- 

ferred to as the Generalized Conservation Law. Note that 

once G(0)(G(1),...,G(L) are known, equations 5-7 and 5-8 

k        k can be used to determine all the A, .  The A,  can then be 

used to determine the marginal distribution of customers 

at each server since the probability that there are exactly 

th k   k+1 k customers at the J-*1- server is equal to A, - A.  . 

Queue Lengths 

Define Q, to be the expected number of customers 

present at the J— server at equilibrium.  Q, may be in- 

terpreted as the expected length of the queue at the J— 

server as long as queue length is understood to Include 

the customer currently being served.  Since A^ - A^"*"* is 
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the steady state probability that there are exactly k cus- 

toraers at the J— server for k»0,l,...,N-1 and A is 

the steady state probability that there are exactly N cus- 

tomers at the J— server, it follows that 

Q, - ZZ k<A1 ' A^+1)  + N-AN. 5-9 
J    k»0     J     J J 

ss 
N 

k«0 
k'AJ     - 

<£-              k IZ  (M)A* 
k=l                J 

= 
N 

k»l *> 

For  ;)=0, 

So «= 
N 

k«=l t 
- 

N 

k*l W 
For J«*1,2,...,L  the Generalized Conservation Law implies 

^_ (p.u/u/ G(N-k) 
£-1   J °  J   G(N) 

Hence, assuming G(0),G(1),...,G(N) have been determined, 

the expected queue length for each processor can be obtained 
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by evaluating the polynomial 

GTNT «(*> - ±. ** ty& 5-10 
k=l 

at the appropriate value of x.  That Is, Q = q(l)  and 

Q, * <l(Piuo/ui)  for >1»2,...,L . 

Since all the coefficients In the polynomial q(x) are 

positive, 

A1"°   %> ^ ^ *> PJU°/UJ 

**q(l) > q(pJuo/uJ) <=* Qo> Qj 

Thus the most highly saturated - and most highly utilized - 

server has the largest expected queue, and equally saturated 

servers have equal expected queue lengths. 

The polynomial expression for Q. presented In equation 

5-10 is quite useful for computational purposes and also 

makes the association between relative saturation and expected 

queue length Immediately apparent.  However It Is necessary 

to develop an alternative representation for Q.  In order 

to expedite some of the computations In Chapter 6.  Note 

first that for 14 JU , 
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Ak 
$-A3+1    •     > F<Vnl nL> 

>   n,=N  & n.=k 
1=1  X ° 

Thus k(Aj  - Aj+1)  * n.  ^> P(no,nlt...,nL) 

>    n.»N  & n.=k 
1=1   * J 

Also Aj    •     \ P(n0,n1,...,nL) 

L 
>    n,=N  & n.=N 
1=1   * J 

so that N-A.    = n.   ^> P(n  ,n.,...,nL) 

L 
T"~n>N A n4=N w1 ' 

Substituting Into equation 5-9 • 

QJ °S"^  I ?(n°,ni "^ 
L 
> n.=N & n.=k 
1=1 x     J 

^>    n^ P(n0,nlt...,nL) 

^__n.=N 
1=1 J 
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GWT > ni  J[ 'PiW"1 5-11 
n,=N 

1=1 * 

This alternative representation for Q. will be exploited 

further in Chapter 6. 

System Performance 

Since central server networks are being considered 

primarily as models of batch processing systems, it is 

natural to define system performance in terms of the average 

number of Jobs processed per unit time.  This quantity is 

comparatively easy to compute for any central server net- 

work.  Recall that If a central server network is observed 

for an interval of time of length T, the expected amount of 

time that the CPU will be active during this Interval is 

AT.  Since the expected amount of CPU processing time per 

program is 1/(U0P0)  by Table *4—2, the expected number of 

complete programs processed during the interval Is 

A T/( l/(u,c ) )  « A.Tuj..  Hence the average number of o       o o        o o o 

programs processed per unit time is A Tu p /T = A u p . 

This quantity, which will be known as the processing 

capacity of the network, will be used in subsequent sections 

of this thesis as the measure of system performance. 

The expression for processing capacity may appear to 

be heavily weighted in terms of CPU performance, but in fact 
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this is not the case.  To demonstrate this point note that 

the expected amount of time that the J— PPU is active during 

an interval of length T is A.T.  Since the expected amount 

of processing time per program on the J— PPU is p*/(u.p ) 

by Table 4-2, it is also possible to express the expected 

number of complete programs processed during Interval T as 

A.T/( P«/(U«PQ) )  = AiTuiP0/Pi •  Hence the expected number 

of programs processed per unit time according to this 

analysis is (A.Tu .pQ/p J/T » AiujPc/pj *  But AJUJpo^pl " 

A u p by the Conservation Law.  Thus the processing capacity 

of a central server network has no special connection with 

CPU performance and can be represented in equivalent form in 

terms of the performance of any other system processor. 

As a final point it should be noted that under the 

current definition processing capacity can only be used to 

compare the performance of systems which are processing 

identical populations of programs. All the examples that 

will be considered in this thesis comply with this require- 

ment. 

Bottlenecks 

The term "bottleneck" is generally applied to a system 

component whose behavior is seriously degrading the perform- 

ance of an entire system.  Despite the widespread use of 

this term. It is not Immediately obvious how to measure the 

degradation in system performance that Is due to the behavior 
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of an individual component.  One possible approach is to 

calculate the effect on system performance of a small 

increase in the performance of the component in question. 

If a small Increase in component performance produces a 

considerable increase in system performance, it would seem 

reasonable to conclude that the component is seriously de- 

grading system performance and creating a bottleneck. 

As the increment in component performance used for 

comparison purposes becomes arbitrarily small, the extent 

to which a particular component is creating a bottleneck 

will become proportional to the rate of change of system 

performance with respect to the performance of that com- 

ponent.   In the case of central server networks where 

individual servers correspond to system components, pro- 

cessing rates (I.e., u ,u1t...,uT) correspond to component 
O   X XJ 

performance, and system performance is measured in terms of 

processing capacity Ci.e., A u p ), it follows that the 

extent to which the J— server is creating a bottleneck is 

proportional to g-r A u p .  Note that A is being regarded 
J 

as a function of u0»
ujtu2»•••»UL* po,pl,p2'* * *,pL  and N 

as indicated in equations 5-3 and 5-^' 

If h: Kn
nVn  - ^7 Aui)  for all i,je{o.l,2 h] ou. o o o  ou. o o o u •" 

then the corresponding central server network has no bottle- 

necks and is in some sense balanced.  If on the other hand 
a 

one of the ~ A U p  is considerably larger than all the 
Ou..   o 0*0 

others, then the corresponding server is creating a serious 
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bottleneck and a small increase In its processing speed can 

be expected to produce a significant increase in the system's 

processing capacity.  This should not be construed to mean 

that bottlenecks are always undesirable.  In fact, it is 

sometimes advantageous to design bottlenecks into a system. 

The section of Chapter 6 dealing with optimal peripheral 

processor utilization (p. 152 ff.) illustrates precisely such 

a situation. 
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COMPUTATIONAL FORMULAS 

Basic Iterative Formula 

If X. Is defined as p.u /u. then equation 5-3 can be 

written more simply as 

G(N) - >    TT <xi>nJ 5-12 
4  J=l   J 

Equation 5-12 has an appealing mathematical symmetry and Is 

also well suited for certain types of symbolic manipulation 

such as symbolic differentiation.  However the computational 

aspects of equation 5-12 are most unattractive, especially 

In light of the observation that there are '7t»:  states 
i-j 

of the form (n ,n,,...,nT)  for which > n.  * N.  Thus the OIL J=1  J 

calculation of G(N) for the comparatively modest case In 

which L « 7 and N • 17 requires the summation of 3^6,10^ 

terms, each of which Is the product of seven factors which 

are themselves powers of the basic units (I.e., the X 's). 

While such computations are well within the capability 

of modern digital computers, the large number of floating 

point additions Is a cause for at least some concern.  There 

Is also the danger of floating point overflow since powers 

17 of X. as high as (X.) ' must be calculated. 

•This fact Is demonstrated by Feller (32, p. 38). 
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Fortunately there exists an extremely efficient com- 

putational algorithm for evaluating G(N).  For the case in 

which L = 7 and N = 17 this algorithm reduces the re- 

qlred computation to 119 additions and 119 multiplications. 

Furthermore, the values of G(1),G(2),...,G(16) are generated 

as Intermediate results so that it is possible to proceed 

directly to the calculation of the marginal distribution of 

customers at each server once G(17) is obtained.  That is, 

once G(1),G(2),...,G(17) are obtained, equation 5-7 can be 

1  2     17 k used to obtain A ,A . ...,A ' .  The values of the A.  for o  o     o J 

j=l,2,...,L can then be obtained using the Generalized 

Conservation Law (i.e., equation 5-8).  It is also possible 

to calculate expected queue lengths at this point, either 

directly from the G(k)'s using equation 5-10 or indirectly 

from the A*s using equation 5-9i line J. 

Before discussing the computational algorithm for G(N) 

it Is necessary to define one auxiliary function.  Assume 

that Xj.Xp,...,*- are specified and define 

g(n.£) = J>    IT U )nJ 5-13 
^-  J=l   J 

n >n 
>iJ 

Equation 5-13 is defined for \^i^L  and n^O.  Note that G(n) 

as defined in equation 5-12 is equal to g(n,L) for any value 

of n.  Note also that g(0,^) • 1 for l*l«L. 
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Next note that  if n*l  and i?=*2,   then 

g(n.i) - 3>~     IT (xjnj     +     V"    " nn- (x.)nj 

_n .±n & n«=0 2_!n «-n & n^-1 
3=1   J 3=1   J 

Now 

3        TT (xjnj   =   ^        TT (xjnj 
4 3=1      J £y .1=1      J 

3-1  J 
n.^n & n/=0 >    n .fen 

3=1    J 

=    g(n.^-l) 

Also 

>   n .fen & rvcil >    n >n-l 
3-1  ° 3-1  J 

X^> g(n-l,/) 

Thus g(n.i)     =    g(n,£-l)     +    X* g(n-l,*) 5-1** 

The boundary condition corresponding to J£ =1  is 

g(n,l)  = iti  (X.)k 5-15 
k=0   l 
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Equation 5-1^ together with boundary condition 5-15 

completely defines the computational algorithm for G(N). 

This algorithm is represented schematically in Table 5-1 • 

A. - j^"o o ••• Afl ••• A.-r 

X <£ j ••• JL ••• JLi 

01 1    l        ...    l     ...    1 

l i+x1 

2 1+X1+X1
2 

g(n-l.i) 

1  : |X* 

n g(n.^-l)  > g(n,i) 

N T~  (X.)k g(N,L) 
k=0 

Table 5-1 

Algorithm Operation 

Table 5-1 illustrates that each Interior value of g(n,^) Is 

obtained by adding together the value immediately to the 

left of g(n.i')  (i.e., g(n,<?-l) )  and the value Immediately 

above g(n,i>) multiplied by the corresponding column variable 

(i.e., X«-g(n-l,j?) ).  Observe that the leftmost column will 

be properly initialized if it is assumed that there is a 

column of l's immediately to the left of that column at the 

start of the algorithm. 
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Note that the ultimate objective of the algorithm is to 

determine the value In the lower right-hand corner of the 

table since this corresponds to g(NfL) = G(N).  However the 

entire rightmost column is of interest since g(ntL) = G(n) 

for n=l,2,...,N.  Thus the values of G(n) for n=l,2,...,N-1 

are natural by-products of the computation of G(N). 

Table 5-1 is slightly misleading since It creates the 

impression that it is necessary to store the entire N by L 

matrix of values of g(n,i?) in order to obtain the values of 

interest in the rightmost column.  In fact  it is never 

necessary to store more than N values at any given time. 

To see this, suppose that the iteration begins with the 

cell in the upper left-hand corner of the table and then 

proceeds by moving down one column at a time.  At any given 

Instant the only values required to complete a column are 

those values which are below the most recently computed 

value and one column to the left plus of course the most 

recently computed value itself.  In addition, all the values 

above the most recently computed value must be retained 

since they will be required in the computations for the next 

column.  This state of affairs is represented schematically 

in Table 5-2. 

As Illustrated in Table 5-2, the basic iterative step 

in the algorithm Involves replacing C(n) by C(n)+X£C(n-l) 

and then either incrementing n by one if n<N or resetting 

n to one and moving to the next column if n=N.  Note that 
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when the algorithm terminates the final values of C(l),C(2)t 

...,C(N) will correspond precisely to the values in the 

rightmost column of Table 5-1  (i.e., to g(l,L), g(2,L), 

...,g(N,L) ). 

xl *2 x3 

123 £ L 

0  1 

1 

2 

3 

1 

C(l) 

C(2) 

c(3) 

n-1 

n 

n+1 

C(n-l) 

C(n) 

C(n+1) 

last value obtained 

next value to be obtained 

C(n) will be set equal to 

C(n) + X/C(n-1) 

N C(N) 

Table 5-2 

Storage Allocation 
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To implement the algorithm it Is necessary to first set 

C(n) equal to 1 for n=0,l,...,L so that the leftmost column 

will be properly initialized during the first iteration. 

Then the basic iterative step must be carried out for each 

cell in the table.  The complete algorithm for computing the 

rightmost column of Table 5-1 can thus be expressed in 

FORTRAN-like notation as follows: 

DO 1 n=0,N 

1 C(n)=l 

C 

DO 2 <2 = 1,L 

DO 2 n=l,N 

2 C(n)=C(n) + Xi*C(n-l) 

Note that each evaluation of C(n) requires one addition 

and one multiplication.  Since C(n) is evaluated a total of 

N-L times during the course of the algorithm, N-L additions 

and N-L multiplications are required for the determination 

of G(1),G(2) G(N). 

The preceding example illustrates that the algorithm 

defined by equation 5-1^ is not only efficient from a 

computational standpoint, but also from the standpoint of 

storage requirements for both data and procedure.  The 

next section discusses the way in which this algorithm and 

its variants can be applied to the wide class of queueing 
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networks considered In Appendix B. 

Extensions 

Two extensions to the basic iterative formula will be 

considered In this section.  The first extension, which is 

relatively minor, will cover the case of closed queuelng 

networks with simple exponential servers.  These networks 

are discussed in the first section of Appendix B.  The second 

extension will cover the networks discussed in the second 

section of Appendix B: namely, closed queuelng networks with 

queue dependent exponential servers. 

The steady state distribution of customers in a closed 

queuelng network with simple exponential servers is presented 

in equations B-8 and B-9.  These equations are of the same 

form as equations 5-2 and 5-3 except that yQ/u • 1 in the 

case of 5-2 and 5-3•  Setting X, equal to y,/u., equation 

B-8 becomes 

1   L     n p<Vni nL} " GTNT Tjj (V J 5"16 

and equation B-9 becomes 

G(N) >    7T <xi)nJ 5-17 

> n .»N 
j<=0 J 
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Equation 5-17 can be evaluated in an efficient manner 

with the aid of a minor change in the definition of g(n,/). 

^  i 
Let g(n.i>) =  >    TT UJ 3 5-18 

I  J=0 

Next note that the argument leading from 5-13 to 5-14 

is still valid and that 

g(n,/)  = g(n,f-l) + X^g(n-ltJg) 5-19 

for 1 fc n 6 N and  1 * / * L. 

The boundary condition corresponding to /=0  Is 

g(ntO) =  (XQ)
n 5-20 

Thus the only differences between the computation of 

G(N) in 5-17 and the computation of G(N) in 5-12 are the 

boundary condition and the presence of X .  The boundary 

condition can clearly be accounted for by initializing C(n) 

to 0 instead of 1 for n=l,2,...,N.  C(0) must still be in- 

itialized to 1.  The computational algorithm for obtaining 

the values which correspond to the rightmost column of 

Table 5-1 for the case where G(N) is defined by equation 

5-17 can thus be expressed in FORTRAN-like notation as 

follows: 
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C(0)=1.0 

DO 1 n=l,N 

1 C(n)=0 

C 

DO 2 £=0,L 

DO 2 n«l,N 

2 C(n)=C(n) + Xg*C(n-l) 

The computation of marginal distributions Is also quite 

similar to the previous case. Note that a natural analog to 

the Generalized Conservation Law (i.e.* equation 5-8) can be 

derived since 

Aj  = \ P(n0,nlt...,nL) 5-21 

L 
> n.»N & n.^k 
1-0 X J 

> ctw ft ixi>ni      by 5_i6 
1-1 

>    n.=N & n.*k 
i»0  x J 

BHT"/^ ^<Xi)ni 

>n,=N-k 
1=0 x 
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A* . <x/2i^l 5.22 

Equation 5-22 is valid for J=0 as well as for J=l,2,...,L. 

Thus, once G(1),G(2) G(N) are calculated, the marginal 

distribution of customers at each server may be readily 

obtained. 

The extension to the case of queue dependent exponential 

servers is slightly more complex.  If X. is once again set 

equal to y./u., then equations B-15 and B-l6 which define the 

steady state distribution become 

L  / y \ n . 

P(rVnl nL>  " G^^AjfejT 5"23 

and 

G(N) . y      T j-fe-y 5-24 

>  n,»N 
J=0 J 

where A, Is defined in equation B-ll. 

In this case g(n,^) will be redefined as 

J=0 "JV"J 

y n .»n 
J=0 J 

5-25 
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It is assumed in equation 5-25 that Ofci'fcL and n*0.  Note 

that it is again true that g(0,^) = 1  since A-(0) = 1 by 

equation B-ll. 

Next note that if 1>/±L 

n 

g(n,i>) 2 
k=0 

(X4)"J 

y 5—TT^i 

J=0 J 

J-0 -J»"j 

& n^=k 

n 

> 

k=0 

(X£)
K 

Aj(ky 

2_n .=n- 
J=0 J 

rt 
(x1)

nj 

3-0 Vnj> 
k & n^-0 

n (X,)' 

£o *?*) 
g(n-k.^-l) 5-26 

It also immediately follows from 5-25 that the boundary 

condition corresponding to ^=0  is 

g(n.O) A^nT 5-2? 
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The computational formula for g(n,^) given in equation 

5-26 is represented schematically in Table 5-3. 

Xl X2 X3 

12  3 

A f    • • • 

£   ... L 

n 

111 

n-2 

n-1 

n 

(X/) 

^AjTnl 

(X/) n-1 

(x^)n"2 . 

(x/) 

g(n-l^-l) x 
(X/)

1 

•* g(n.n 

N 

Table 5-3 

Algorithm Operation for Queue Dependent Servers 
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The storage allocation policy depicted in Table 5-2 is 

clearly not adequate in this case since it is necessary to 

save the entire £-1— column until the last entry in the i— 

column has been calculated.  If the entries in the I— I i.e., 

current) column are represented by C(n,LC) for n=l,2 N 

and the entries in the /-l— (i.e., previous) column are 

represented by C(n,LP) for n=l,2,...,N , then the basic 

iterative step of the algorithm involves setting C(n,LC) 

equal to £Z TcKn-k.LP)* (X£)
kj / A^(k) . 

When expressing this algorithm as a FORTRAN-llke program 

it is convenient to assume that C is a doubly subscripted 

variable with dimension N+l by 2.  The algorithm is then: 

C(0,1)=1 

DO 1 n=l,N 

1 C(n,l)=0 

Initialize 
first 
column 

LP=1 

LC=2 

Initialize 
LP and LC 

DO 3 ^=0,L 

DO 2 n=l,N 

C(n,LC)=0 

DO 2 k=0,n 

2 C(n,LC)=C(n,LC) + C(n-k,LP)*(X^**k)/A^(k) 

LP=3-LP 

3 LC=3-LC 

Ferform 
basic 
iterative 
step 

Interchange 
LP and LC 
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Note that each time a column is completed LC and LP are 

interchanged so that the most recently computed column 

becomes the previous column for the next iteration and the 

other column becomes the storage area into which the results 

of the next iteration will be placed.  When the algorithm 

terminates the values of C(nfLP) will correspond to the 

values of g(ntL) for n=l,2,...,N. 

The marginal distribution of customers at each server 

is also more complicated in this case. To demonstrate how 

this distribution can be computed, first define 

Ej =  ^>    P(no,nlt...,nL) 5-28 

r-o * J 

Note that   E* • A^ - A^+1  where A*  is defined in 

equation 5-21•  Thus far the strategy has been to obtain the 

values of A. first and thus, by implication, the values of 

E^ ,  but in this case it is easier to obtain the values of 

Ej directly. 

At this point it is necessary to introduce one additional 

auxiliary function.  Let 

h(n,i) - >    I I A fe ) 5-29 

__n .=n & n/;=0 
J=0 J 
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Jote that equation 5-29 bears a marked resemblance to equa- 

tion 5-25; in fact, it is easy to see that h(n,L) = g(n,L-l) 

for n=0,1,...,N. 

Returning to the calculation of E. ,  note that 

" ^ 

i    fr (Vni 

GTNT l=0     A1(n1) 

1=0 
n.=N & n .=k 

(X«)ni 

1=0 W 

1=0 
n.=N-k & n .=0 

(XJ}   h(N-k.J) 
Aj(k)   G(N) 5-30 

Thus, assuming the values of h(n,J) have all been calculated, 

the values of E. can be easily obtained using equation 5-30. 

It has already been pointed out that the values of h(n,L) are 

automatically calculated by  the algorithm for G(N) so that 

h(n,L) = C(n,LC)  for n=0,l,...,N at the completion of this 

algorithm.  To obtain values of h(n,jP) for 2^L  it is neces- 

sary to permute the sequence of X.'s so that the last 

(i.e., L—) X, is equal to X^.  The algorithm for G(N) must 

then be applied to this permuted sequence.  It is of course 
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st possible to stop at the L-l— column in this case since the 
X. 1- 

L— column contains no new information. 

It should be noted that it is possible to adopt a hybrid 

approach at times when some of the servers in the network 

are of the simple type (i.e., some of the A.(k) are identl- 

cally equal to one).  In these cases the values of A, for 

the simple servers can be computed directly from equation 

5-22 with no need to resort to equation 5-30.  Also, if the 

servers are permuted so that the first S+l are all simple, 

then the first S+l columns of Table 5-3 can be computed 

using the algorithm of Table 5-1*  The remaining L-S columns 

must then be computed using the more complex algorithm of 

Table 5-3. The hybrid algorithm appears on the following 

page.  This algorithm should have wide applicability since 

many networks of interest contain at least a few simple 

exponential servers. 
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C(0,1)=1 

DO  1 n=l,N 

1 C(ntl)=0 

Initialize 
first 
column 

DO 2 0=0,S 

DO 2 n=l,N 

2 C(n,l)=C(n,l) + X£*C(n-l,l) 

Evaluate first 
S+l columns 
using algorithm 
for simple expo- 
nential servers 

LP=1 

LC=2 

Initialize 
LP and LC 

DO  4   jNS+l.L 

DO   3  n=l,N 

C(n,LC)=0 

DO   3  k=0,n 

3 C(n,LC)=C(n,LC)   +  C(n-k,LP)* (X£**k)/Aje(k) 

Perform 
basic 
iterative 
step 

LP=3-LP 

I*  LC=3-LC 

Interchange 
LP and LC 

Hybrid Algorithm 

for the computation of g(N,L) 
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CHAPTER 6: APPLICATIONS 

INTRODUCTION 

The analysis presented in Chapter 5 dealt primarily 

with the mathematical aspects of central server networks. 

That is, the steady state distribution and its associated 

properties were all derived without explicit mention of the 

fact that central server networks are of interest as models 

of multiprogramming systems.  Since central server networks 

were treated as mathematical objects rather than mathematical 

models. Chapter 5 may be regarded as an excursion into the 

realm of pure mathematics. 

In this chapter central server networks will once again 

be regarded as mathematical models and will be used to examine 

a number of problems related to the operation of actual 

multiprogramming systems.  Three specific problems related 

to buffer size determination, peripheral processor utiliza- 

tion and page traffic balancing will be considered. 

In each case the emphasis will be on gaining insight 

into the nature of the underlying stochastic process.  While 

such insight has always been regarded as the primary objective 

of the central server model, it should be noted that the 

model can also be used to examine the behavior of actual 

multiprogramming systems simply by assigning empirically de- 

termined values to the model parameters and then correlating 
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predicted behavior with observed behavior.  This alternative 

use of the central server model represents a distinct depar- 

ture from the underlying theoretical orientation of this 

thesis  and thus will not be pursued further at this time. 

BUFFER SIZE DETERMINATION 

Problem Definition 

In order to optimize buffer size for I/O devices in a 

multiprogramming environment it is necessary to balance a 

number of interrelated factors.  For example, as buffer size 

increases the amount of main memory space available for pro- 

gram storage decreases, and this in turn reduces the degree 

of multiprogramming and tends to degrade system performance. 

On the other hand, as buffer size decreases the number of 

I/O transfer requests per program increases.  Assuming that 

each transfer involves a certain amount of overhead which is 

independent of buffer size, the total amount of overhead per 

program will thus Increase as buffer size decreases, and this 

will also tend to degrade system performance.  Hence it is 

important that buffers be neither too large nor too small. 

Changes in buffer size bring about other effects as 

well.  For example, decreasing the buffer size associated 

with a particular peripheral processor decreases the expected 

processing time per request for that processor, increases 

the total expected number of FPU and CPU processing requests 
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per program, decreases the expected time required to complete 

a CPU processing request (since FPU requests become more fre- 

quent), and alters the probabilities governing the selection 

of peripheral processors. The remainder of this section will 

be devoted to analyzing this set of interrelated factors with 

the aid of the central server model of multiprogramming. 

Relation Between Buffer Size and Network Parameters 

Suppose that it is desired to optimize buffer size for 

st the 1— PPU in a central server network.  Assume that the 

corresponding system contains M units of main memory which 

may be used for either program or buffer storage, and suppose 

st that average program size excluding buffer space for the 1— 

PPU is equal to one memory unit. 

Next suppose that the amount of time required to perform 

an I/O transfer on the 1— PPU is a random variable made up 

of two components: the first component represents overhead 

and has an expected value of v regardless of buffer length, 

while the second component represents actual transfer time 

and has an expected value of s^-b where s., is a constant and 

b is the length of the buffer measured in memory units. 

Since all processors in a central server network are assumed 

to have exponentially distributed service times, it will 

further be assumed that the amount of time necessary to carry 

st out an I/O transfer on the 1=— PPU, given that buffer size 
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st for the 1— PPU is equal to b, is an exponentially distributed 

random variable with mean v + s..-b . 

Four additional factors are required to complete the 

specification of the network.  These are defined as follows: 

st r. = total expected amount of data transferred to the 1— 

PPU per program (measured in memory units of data) 

r. = total expected number of processing requests directed 

to the J— PPU per program ( J=2, 3, . • . .L) 

s . = expected amount of processing time for a request 

directed to the j— PPU (j=2,3,..,L) 

C = total expected amount of CPU processing time per program 

The next step is to determine the parameters of the 

associated central server network under the assumption that 

buffer size for the 1— PPU is equal to b.  Note first that 

u. = 1/s 1 (J=2,3,...,L) regardless of the value of b, and 

that u1 = l/(v+s1b)  by the definitions of v and s-. 

Determination of the branching probabilities is slightly 

more complicated.  Since buffer size Is equal to b, the 

total expected number of transfer requests per program 

directed to the 1— PPU is r1/b .  Thus the total expected 

number of PPU processing requests per program is r^/b + 
L 
>  r. .  Applying equation 4-4, 
J=2  J 

l/po - 1 = r,/b + ZI rj 

L 
Thus      prt = l/tl+r./b+T"" r.) 

°        1       j=2  J 
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By the results collected in Table 4-2, 

Pj/P0 = r^  for j=2,3,...,L 

L 
Thus     Pj = rjPo = rj/d+^/b+Z^rj) 

Also,   P]/PO = 
ri/b 

L 
Thus      Pl = (r1/b)po = (r1/b)/( l+i^/b+T" r ) 

All the branching probabilities have now been expressed as 

functions of b. 

To determine u note that  l/(u p ) = C by Table 4-2 . o        j o o 

Thus u = l/(p C) = (l+r./b+^I r .)/C .  The only network 
o      o       i  J=2  J 

parameter still to be determined is N, the degree of multi- 

programming.  Since each program requires b memory units 

st for a buffer for the 1— FPU and one memory unit for other 

purposes (including program storage), it immediately follows 

that N = M/(l+b) . 

Non-Integral Values of N 

This last equation introduces certain difficulties 

because N is no longer necessarily integral as required by 

the original central server model.  Fortunately, there is a 

rather simple way to remedy this situation.  Note first that 

one way of interpreting the statement that N = 6.5  is to 

assume that there are 6 programs in the system for half the 

time and 7 programs in the system the remainder of the time. 
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In general, the statement that N = I + h where I Is an 

integer and  0<hcl  can be Interpreted to mean that there 

are I programs in the system part of the time and 1+1 pro- 

grams in the system the rest of the time, where the fraction 

of the time that there are I programs in the system is equal 

to 1-h and the fraction of the time that there are 1+1 pro- 

grams in the system is equal to h. 

Continuing with this line of reasoning, if PNln ,n..,..., 

nL)  is the steady state probability that there are n, pro- 

grams at the j— server in a central server network, given 

that there are N programs in the entire system, then 

PN(n ,n., . . . ,nL) will be defined as (l-h)-P-.(n ,n..,...,nT) + 

h-Pr+1(n .n.,...,nL).  That is, if N is not integral then 

the steady state probabilities associated with N will be 

defined by simple linear interpolation using the two integral 

values closest to N.  There are obviously other ways of de- 

fining PN(n ,nlf...,nL) for non-integral values of N, but 

these will not be explored at this time since the linear 

interpolation method is satisfactory for the problem at hand. 

Chapter 7 contains a discussion of some of the alternative 

methods of dealing with the problem of non-integral values 

of N. 

Optimization Equations 

Now that all the network parameters have been represented 

as functions of b, it is possible to consider the problem of 
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optimizing system performance with respect to b. Since sys- 

tem performance is measured in terms of processing capacity, 

the problem is thus to optimize 

L 
>    TT (p.u/u/j 
L      J-i 
T~n ,*N-1 
J=l J 

A~U~P~ =   u p O OrO        , 0*0 

U (PJVU/J 

with respect to b 

where    p    =  l/( 1+r../b+]>     r.) 
° j=2     J 

L 
p.   =   (r1/b)/(l+r1/b+5I rj 11 X        J=2     J 

L 
Pj = rj/d+yb+Hr^) for   J=2,3 L 

L 
u    =   (l+ri/b+2_ r,)/C o i       J=2     J 

u1 =  l/(v+s1b) 

uj = 1//s a for ^=2,3» • • •,L 

and   K  = M/(l+b)   where non-integral values of N are 

evaluated by linear interpolation 

Even though all the network parameters - except the u . 

for j=2,3,...,L - depend on b, many of these dependencies 
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cancel each other out in the expression for A u p .  For ^ o o*o 

example, if X, is defined as p.u /u., then for j=2,3,...,L 

[r/(1+ri/b+|i rj)][(1+ri/b+^ rj)/c] 
l/s 

= rJs/c 

Thus X, is independent of b for j=2,3»•••»L- 

Also u B = (l+ryb+^3 r,)/C 
° °  I    x   j=2  J 

l/(l+r1/b+ £r'>] 
= 1/C 

Since up  is independent of b, this factor can be omitted 

from the original optimization problem so that the problem 

becomes one of optimizing A - rather than A u p  - with o o o o 

respect to b. 

Finally, note that 

xi • PiVui 

[ (r1/b)/(l+r1/b+ £'*}[ { 1+T./h+y~ r.)/C 
1       J=2     J ] 

l/(v+s1b) 

"Fc-(v+sib) 

r
lv    +    risi 

b-C 
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Thus the problem is to optimize 

>   TT (xjnj 
4 J=I    J 

_n ,6N-1 
J=l J 

y "iT(x1)
nj 

4 J=I    J 

with respect to b 

rlsl  rlv where X±  = -^- + ^r 

rj!i 

and 

•j   c 

N  = M/(l+b) 

for j=2f3,...,L 

where non-integral values of N are 

evaluated by linear interpolation 

Analysis 

At this point it is useful to consider the consequences 

of setting v, the expected overhead per transfer, equal to 

zero.  In this case the only factor which remains dependent 

upon b Is the degree of multiprogramming since N = M/(l+b). 

This is true even though the expected number of processing 

requests per program for the 1— PPU  (i.e., r1/b)  and the 

st expected time to complete a processing request on the 1— 

PPU  (i.e.,   Sjb   )  still depend on b.  The point is that 

these effects cancel each other out entirely in the zero 

overhead case.  Hence it is desirable to select a value of 
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b which is as small as possible since this will maximize N 

and thereby optimize system performance. 

The introduction of non-zero overhead significantly 

alters this state of affairs.  When v is greater than zero 

a decrease in b will not only Increase the expected number 

st of processing requests per program directed to the 1— PPU 

(i.e., r./b)  but also will increase the total expected 

overhead per program (i.e., v«r../b).  This increase in total 

overhead will tend to degrade system performance, thus 

counteracting the improvement in system performance which 

results from the increase in N. 

Note that decreases in b produce two important effects: 

total overhead Increases which tends to degrade performance, 

and N increases which tends to improve performance.  Since 

the degradation associated with the first effect decreases 

as v decreases, it is possible to decrease b further when v 

Is small before reaching the point at which the loss associ- 

ated with the first effect outweighs the gain associated 

with the second effect.  In other words, as v decreases the 

optimal buffer size also decreases. 

The preceding analysis also has Implications for the 

case in which v is held constant and the size of main memory 

(i.e., M) is varied.  Under these circumstances the improve- 

ment associated with the second effect will be less pro- 

nounced for larger values of M since it is less important 

to increase N when N is already large.  That is, the gain 
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in performance in going from N=6 to N=8 is less significant 

than the gain in performance in going from N=2 to N=^.  Hence 

it is possible to decrease b further when M is small before 

reaching the point at which the gain associated with the 

second factor ceases to outweigh the loss associated with 

the first factor.  This implies that optimal buffer size de- 

creases as total memory size decreases. 

Table 6-1 illustrates these general remarks with specific 

numerical examples.  Each row of the table is associated with 

a particular value of s.. so that, within each row, the trans- 

st fer rate of the 1— PPU is held constant while the expected 

overhead per transfer (i.e., v) and the size of main memory 

(i.e., M) are varied.  Note that within each memory group 

the optimal buffer size decreases as overhead decreases.  It 

it also possible to observe that optimal buffer size decreases 

as main memory size decreases simply by comparing columns 

which have the same associated value of v. 

None of the results presented thus far could be described 

as particularly surprising.  However, Table 6-1 illustrates 

one effect which may indeed merit such a classification.  To 

observe this effect it is necessary to scan down the columns 

of the table rather than scanning across the rows.  Note that 

the only factor that varies within a column is the transfer 

rate of the l2-^ PPU.  That is, the further down In a column 

an entry appears, the lower the associated transfer rate.  A 

scan down any of the columns thus reveals that optimal buffer 
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! .3 .33 .50 .66 .43 .67  .88 .44  .78 1.03 

: .4 .33 .51 .66 .43 .67  .92 .49  .82 1.11 

; .5 .33 .51 .67 .44 .69  .96 .54  .89 1.21 

; .6 * .33 • 52 .67 .47 .73 1.00 .59  .97 1.22 
i 

•7 .3^ .52 .68 • 50 .76 1.00 .66 1.00 1.31 

!-8 .34 • 53 .68 .53 .79 1.00 .70  1.08 1.41 

.9 • 34 • 53 .69 .55 .82  1.00 .78 1.18 1.50 

1.0 • 35 .53 .69 .58 .85 1.00 .82  1.22 1.50 

1.1 .35 .54 .70 .61 .89 1.03 .89 1.26 1.56 

1.2 .35 .54 .70 .65 .92  1.06 .99 1.36 1.66 

1.3 .35 • 54 .71 .67 .96 1.08 1.00  1.48 1.78 

1.4 .36 • 55 .71 .67 1.00 1.11 1.07 1.50 1.86 

1.5 • 36 .55 .71 .67 1.00 1.15 1.19 1.50 1.86 
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Table 6-1 

Optimal Buffer Size 

Main memory size 

Expected overhead per transfer 

Expected time to transfer a buffer of unit size 

J 

k 
1000 

1000  for j=l,2,3,4 

1    for J=2,3,4 

Additional problem parameters 
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size increases as the transfer rate decreases.  In other 

words, slower devices should have larger buffers than faster 

devices. 

There are no doubt factors beyond the scope of the model 

which tend to counteract this effect.  However, it is still 

important to understand the factors within the model which 

work to bring this effect about.  Recall that the two most 

significant consequences of changes in buffer size are the 

change in the degree of multiprogramming and the change in 

the expected amount of overhead per program associated with 

the 1— FPU.  Next note that as the transfer rate of the 1— 

PPU decreases, the extent to which that PPU is creating a 

system bottleneck and degrading overall performance Increases, 

This is true regardless of the expected overhead per transfer, 

This bottleneck effect is then compounded by decreasing 

b since decreases in b increase the overhead associated with 

the 1— PPU.  If the 1— PPU is already creating a serious 

bottleneck because of its low transfer rate, the additional 

overhead associated with small buffer size will be quite 

harmful, and hence it will be preferable to select a larger 

buffer size even though this reduces the degree of multipro- 

gramming to a significant extent. 
st On the other hand, if the 1— FPU has a high transfer 

rate and is not acting as a system bottleneck, buffers can 

be made quite small before the combination of overhead plus 

transfer rate creates a serious bottleneck.  The optimal 
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buffer size will thus be smaller in this case since the im- 

provement in performance due to increasing the degree of 

multiprogramming will not be outweighed by the bottleneck 

effect until b reaches a smaller value.  Hence, within the 

context of the model, slower devices should be allocated 

larger buffers than faster devices. 

Table 6-2 amplifies these remarks still further.  The 

table corresponds to the row in Table 6-1 for which the time 

to transfer a buffer of unit size (i.e., s^) is equal to .5 • 

The entries in Table 6-2 illustrate the way in which system 

performance varies as a function of buffer size for each 

combination of overhead and memory size in the corresponding 

row in Table 6-1.  The same values appear in both Part A and 

Part B of Table 6-2, but the columns are grouped together 

differently in each part.  The values in Table 6-2 are also 

presented graphically in Figure 6-1. 

In Part A of Table 6-2 the values are grouped together 

according to overhead.  The upper rows illustrate that, when 

buffer size is small, the chief factor affecting performance 

is the bottleneck effect created by the excessive overhead 

st load on the 1— PPU.  Thus, performance is approximately the 

same within each overhead group even though main memory size 

varies greatly. In other words, the degree of multiprogram- 

ming has little effect on system performance because of the 

st bottleneck created by the 1— FFU.  Note that the degradation 

due to the bottleneck increases as the expected overhead per 
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1 

1-3 .32 .55 .72 .31 • 53 .70 .29 • 51 .67| 

1.4 • 31 .54 .71 .30 .52 .69 .29 .51 .67| 

1.5 .30 .53 .71 .29 .52 .69 .28 .50 .67| 

b 

Table 6-2  Part A 

System Performance as a Function of Buffer Size 

M • Main memory size 

v = Expected overhead per transfer 

b = Suffer size 
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1.0 .35 • 33 .32 .58 .56 .53 .74 .71 .67 
1.1 • 34 • 32 .31 .57 • 55 • 52 .73 .71 .67 
1.2 .33 .31 .30 .56 • 54 .52 .73 .71 .68 
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1.4 !      .31 .30 .29 .54 .52 .51 .71 .70 .67 

1.5 .30 .29 .28 .53 • 52 • 50 .70 .69 .67 

b 

Table 6-2 Part B 

System Performance as a Function of Buffer Size 

M = Main memory size 

v = Expected overhead per transfer 

b = Buffer size 
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transfer Increases. 

Conversely, the lower rows of Table 6-2 Part B illustrate 

that the expected overhead per transfer has no appreciable 

effect on system performance when buffer size is large.  In 

this case the most important factor limiting performance is 

the degree of multiprogramming, and this in turn is dependent 

only upon the size of main memory (i.e., M). 

The curves plotted in Figure 6-1 all Illustrate the 

fact that the degradation due to excessively small buffers 

is considerably more severe than the degradation due to ex- 

cessively large buffers.  This is because the expected total 

overhead per program increases quite rapidly as buffer size 

decreases and, in fact, goes to infinity as buffer size 

approaches zero.  Thus it is generally better to err on the 

side of larger than optimal buffers in cases where some un- 

certainty exists. 

As stated earlier, there may be other factors not re- 

presented in the central server model which tend to make 

large buffers more desirable for fast devices.  For example, 

in real-time systems it is important to insure against buffer 

overflow even though this may result in large buffers and a 

sub-optimal degree of multiprogramming.  The point of this 

analysis is not to discount the importance of these other 

factors, but merely to introduce one additional and perhaps 

unexpected factor into the decision making process. 
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= Relative performance 

.2 .6     .8    1.0   1.2 

b = Buffer size 

Figure 6-1 

Effect of Buffer Size Variation on Relative Performance 
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PERIPHERAL PROCESSOR UTILIZATION 

Problem Definition 

Consider a system which contains a set of functionally 

equivalent peripheral processors such as a disk, a drum and 

a data cell, and assume that it is possible to vary the 

relative number of I/O transfer requests which are directed 

to each of these processors.  Such variation might be brought 

about by altering monitor tables which control the movement 

of overlay segments and temporary files, or by adjusting 

pricing policies so that it is more economical to use one 

device rather than another.  In any event  it will be assumed 

that the total number of I/O transfer requests directed to 

this set of functionally equivalent processors is constant, 

but that the relative number directed to each Individual 

processor is a specifiable parameter.  The optimal selection 

of these parameters is thus one of the many problems of 

operating system design. 

Optimization Equations 

One method of approaching this problem is to assume 

that the system in question is represented by a central 

server network.  Let S be the set which contains the sub- 

scripts of the functionally equivalent processors, and let 

T be the total expected number of I/O transfer requests per 

program directed to this set of processors.  Since the 

152 



expected number of processing requests directed to the 1— 

PFU in a central server network is p,/p  ,  the values of p. 

for i€S must be chosen so that >  p*/p  = T.  The other 
i«S 1     ° 

parameters characterizing the network such as the speed of 

processors, the degree of multiprogramming and the branch- 

ing probabilities for the other processors in the network 

(i.e., the p. for i^S)  are all constants.  Assuming system 

performance is measured by processing capacity, the problem 

then is to maximize 

L 
> jr <P3w

nJ 
,.> n £N-1 
3-1 ° 

AouoPo " L 
:  uopo      6~1 

">~     TT (Plu /u )nj 

>~n,^N 
J=l ° 

with respect to {p.| 1 £ S} , 

subject to the constraints that ^^ p. = p T  and  p. = 0. 
lfeS  1   ° x 

Discussion of Results 

Problems of this type fall within the realm of the 

calculus of variations and are generally treated using the 

method of Lagrange multipliers.  Unfortunately this method 

has not yielded a closed form solution which expresses the 

values of p. for it S  in terms of the other network para- 

meters and T.  However, a number of interesting relations 
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have been shown to hold at the point of optimal system per- 

formance. 

Before discussing these relations it is worthwhile to 

examine the general problem on an intuitive basis.  Note 

first that if two processors in the functionally equivalent 

group have the same speed (i.e., u.=u. for i,j£-S), it is 

reasonable to expect that p. should equal p. at the point of 

optimal system performance since directing a greater propor- 

tion of processing requests to one of these processors would 

tend to overload it while underloading the other.  This in- 

tuitive judgment has been substantiated analytically. 

On the other hand  there is a seemingly obvious general- 

ization of this line of reasoning which is not valid.  Suppose 

that processor i is t times faster than processor J (i.e., 

u.=tu, for i, jtS with t>l).  It might then seem optimal to 

channel t times as many processing requests to processor i 

as to processor j (i.e., to set p,=tp.).  This would have the 

effect of equalizing p,/u. and p./u., which would then imply 

that A. = A. by the Conservation Law and Q. = Q by equation 

5-10.  While these conditions may seem compatible with opti- 

mal performance, it can be shown that system performance is 

never optimized when p*=tp.; instead, it is preferable to 

have p. >tp,.  That is, faster processors should receive 

more than their proportional share of processing requests. 

It then follows that faster processors should be more highly 

utilized and should have longer expected queues; it Is also 
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true that performance Is optimized when faster processors 

are creating system bottlenecks in the sense of the previous 

chapter. 

Table 6-3 illustrates these remarks with specific 

numerical examples.  The table deals with a central server 

network containing four peripheral processors, two of which 

are assumed to be functionally equivalent.  That is, L=^ 

and S = i;3,^J.  In addition T=2, p =p1=p2=.2, u.=u2=l  and 

u =5-  With these parameters held fixed, the speeds of the 

functionally equivalent processors (i.e., u_ and u^)  were 

varied subject to the constraint that u_+u^=2.  For each 

value of U-VUK  the optimal values of p., and p^ were obtained 

by a numerical search.  Each time an optimal point was 

located, a record was made of the following three system 

characteristics:  p3/p4 ,  Q /Q^  and  f^ AQuopo/ |- AQuopo . 

This entire procedure was carried out for four different 

values of N as Indicated in the table. 

The table illustrates that the optimal value of Po/pj, 

is always greater than the corresponding value of U./UL  as 

long as U„/UK>1.  However, this effect is more noticeable 

for large values of u„/u^ and for small values of N.  That 

is, as the difference in the speeds of the functionally 

equivalent processors increases or the degree of multipro- 

gramming decreases, it becomes even more important to channel 

a greater number of requests to the faster processor.  The 

ratio of expected queue lengths and the extent to which the 
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faster processor is creating a bottleneck are also seen to 

be positively correlated with the difference in the speeds 

of the two processors and negatively correlated with the 

degree of multiprogramming. 

These observations can be explained on an intuitive 

basis by noting that it is preferable to channel processing 

requests to the faster PPU as long as the expected waiting 

time plus processing time for the faster PPU is less than 

the expected waiting time plus processing time for the slower 

PPU.  As the degree of multiprogramming decreases, the ex- 

pected waiting time for all processors in the system decreases, 

and hence it becomes possible to channel more and more pro- 

cessing requests to the faster PPU before the build up in 

waiting time overtakes the processing speed advantage.  To 

further illustrate this point, note that in the limiting 

case where the degree of multiprogramming is equal to one, 

the faster PPU should receive all the processing requests 

since there is never any queue wait.  This analysis does 

not take into account limits in storage capacity or other 

factors which might make it necessary to channel at least 

some requests to the slower PPU in this case. 

Increasing the speed differential between the faster 

PPU and the slower PPU reduces the expected waiting and pro- 

cessing time for the former while increasing the expected 

waiting and processing time for the latter.  Thus, to main- 

tain optimal performance in this case, it is necessary to 

157 



Increase the expected queue length at the faster PPL) by 

channeling still more processing requests to it.  Hence, on 

Intuitive grounds it can be seen that the optimal proportion 

of processing request channeled to the faster PPli increases 

when either the degree of multiprogramming decreases or the 

speed differential between the PPU's increases. 

Mathematical Analysis 

Two useful conditions will be shown to hold at the point 

of optimal system performance.  The first is that 

J- k 
p        IZ VPIW 
 for all  1,J«S. 6-2 

Pi JS- ,      k 

The coefficients c, in equation 6-2 are defined as follows: 

c „ G(N-k)     G(li-l-k)     f   k=1 2    N-1 ck   G(N)      G(N-l)      lor K ^  X 

and   cN = 1/G(N) 

Equation 6-2 implies that P«/p* = u./u* at the point of 

optimal performance if and only if u. = u..  To see this, 

note that Pj/p. = ^/u. implies P^u /T^ = Pjuc/Ui • whlch ln 

turn implies that the right hand side of equation 6-2 is 

equal to one.  Thus, if Pj/p,  = Uj/u . and uj. " ui • tnen 

equation 6-2 will be satisfied and the system will be opti- 

mized.  Conversely, if p^p , = ^/u. and the system is opti- 

mized (i.e., equation 6-2 is satisfied), then the left hand 

side of 6-2 must be equal to one.  This then implies u^  = u., 
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The second condition of interest which holds at the 

point of optimal performance is that 

A      IT
-
 A u p A,     °u, o 0*0 
1   6-3 

AJ    f- A u p 0       dVL  . O OO 

In addition to simplifying the computations for the last set 

of columns in Table 6-3, this equation also demonstrates 

that bottlenecks must exist at the point of optimal perfor- 

mance if u  ^ u,  since A./A. is equal to one if and only if 

p./p. = u./u. by the Conservation Law, and this equality will 

exist at the point of optimal cerformance if and only if 

u. = u. as demonstrated in the previous paragraph.  Thus, if 

u. ^ u, there must be a bottleneck at the point of optimal 

performance. 

Equations 6-2 and 6-3 can be formally derived from the 

optimization conditions for equation 6-1 by the method of 

Lagrange multipliers.  Before applying this technique it Is 

useful to make a few elementary observations.  First note 

that p  cannot be a member of the set £p. 1 16-SJ since the 

CPU is not being considered as one of the functionally 

equivalent processors.  Hence the factor up is invariant 

with respect to jp, [ ifiS} and may be disregarded during the 

optimization procedure. 

Next note that A = G(N-1)/G(N) where G(N) is defined o 

in equation 5-3 .  Thus the original problem is equivalent 

to the problem of maximizing G(N-1)/G(K)  with respect to 
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[p, li^sj subject to the constraints that ^>  p. = p T  and 
i^-S 

p, - 0.  Applying the method of Lagrange multipliers, this 

is then equivalent to maximizing 

G(N-1)/G(N) + ex P5~ p   -  p TI 
^-ieS ° J 

6-4 

with respect to j_p. I i*S) subject only to the constraint that 

p, ^ 0  for all ieS. 

The next step is to set all the partial derivatles of 

6-4 equal to zero.  For any i^S, 

dp, G(N-1)/G(K)   +   * \y~ y,      -     pT~| 
LieS J 

dP. 
G(N-1)/G(N)     +     ex 

Now dP1 
>,>       TT (P.^/U/3 

j=l J 

=2 n^p^/u^-i-^u^u^TTCp^/uj)^ 

<x, which is known as a Lagrange multiplier, is treated as a 
constant during the optimization process.  After the optimal 
values of {pJi&SJ are obtained (as functions of «*), 
the value of <x is selected so that the constraint > p.=p T 
is satisfied. i€S   ° 
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*s niTT (pJV
u

>3)
nJ 

J=l J 

= G(N)'Q1(N)/pi 

This last step follows from the definition of Q. given 

in equation 5-H•  In this discussion the dependency of Q, 

on N is being explicitly represented since expressions of 

the form Q.(N-l) will also be needed. 

Continuing with the analysis, 

d  G(N-l)   G(N) G(N~1) Qi(N-D/P1  -  G(N-l) G(N) Q1(N)/p1 

Hence the partial derivative of 6-4 with respect to p. is 

G(N- 
G ̂ li.[Ql(N-l) -Ql(N)] + « 

Setting this derivative equal to zero yields 

«.Sgfc JjJlX^Ol) .,,(•-!)] 

Since all the partial derivatives are equal to zero at the 

point of optimal performance, the following relationship 

must hold for any l,j*-S at this point: 
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s^i x [S(K, - v,-i>] - a^i x [,jW, . VN_U] 

Equivalently, 

Pi   Q1(N) - Q^N-1) 

Pj   Qj(N) - Qj(N-l) 

By equation 5-10, 

M 

«!<»>  -£<PlW*W 
Thus 

N-l 
Q,(N) - Q.(N-l)  = 
11        k 

^_ (p1uo/u1)  [_ G(N)  "  G(N-1) J 

N +  (p1Uo/u1)
1VG(N) 

Setting   cN = 1/G(N) 

and      c m    G(N-k) _ G(N-l-k) 
k    G(N)    G(N-l)        lor K-i,^ N-i 

yields 

k 

°k(PiVui) 

P«     N k 

z: ^(PJ^/UJ) 

This completes the derivation of equation 6-2.  To 

derive equation 6-3, note that 

*- -  _ J_G(N-1)   G(N) h^'^     -     G(N-1)^G(N) 
du1

Ao " dUj_ G(N) 
G(N)2 
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Now r— G(N) clu. au, 
,n 

J=l 
PjUo/Uj)   J 

J=l J 

n1(piuo/Ul)
ni-1(-piuo/u1)Tr(pjuo/uJ)"j 

^7 2 n 

L 
i TT (PjV

uj)nj 

=   -G(N)-Q1(N)/u1 

Thus     5J7 A„ ou*   o 

-G(N)-G(N-l)-Q1(N-l)/u1     +     G(N-l)-G(N)-Q1(N)/u1 

G(N)2 

=^[Ql(N)   -Qi(N-l)] 

This  in  turn  implies 

u, 
Ql(H)   -Ql(N-l)   -^^A0 
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Substituting in equation 6-5t 

Pi    AQ ^A 

Therefore 

AQ  ,u.Ao 

a   . 
d\i1 o 

Vopi/u] But    A°Pl/Ui       "o^o^l7/! 
v/uj" vvT^ 

A. 
 i_ 
A, 

by the Conservation Law. 

Thus 

-S- A ^ du1
Ao 

at the point of optimal performance. 

Equation 6-3 then follows immediately. 
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PAGE TRAFFIC BALANCING 

Problem Definition 

Multiprogramming systems which make use of paging pro- 

vide another area of application for the central server 

model.  An important feature of such systems is that, at any 

given time, some of a program's pages will reside in main mem- 

ory while others reside in auxiliary memory.  When a program 

references a page which is not in main memory, that page 

must be transferred in from auxiliary memory.  In order to 

make room for this page it is sometimes necessary to first 

transfer a page out of main memory.  These page transfers 

are handled by a PPU which will be called the page transfer 

processor. 

An interesting aspect of paged systems is that it is 

possible to vary the number of page transfers per program by 

varying the total number of pages that a program is permitted 

to maintain in main memory at any time.  That is, in systems 

where only a small number of pages from each program are 

maintained in main memory, references to pages not in main 

memory will be fairly frequent, and so the total number of 

page transfers per program will be high.  On the other hand, 

in systems where a large number of pages from each program 

are maintained in main memory, references to pages not in 

main memory will be relatively infrequent once the Initial 

set of pages is loaded, and so the total number of page 
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transfers per program will be fairly low.  Thus it would 

appear advantageous to maintain a large number of pages 

from each program in main memory. 

However, with the size of main memory fixed, systems 

which maintain a small number of pages from each program in 

main memory will have a large number of programs in main 

memory at any time, which is to say a high degree of multi- 

programming.  This will tend to improve system performance 

by enabling other programs to utilize the GPU and various 

PPU's while the page transfer channel is carrying out a 

transfer for a particular program.  Hence there are also 

advantages to maintaining a small number of pages from each 

program in main memory.  This suggests it should be possible 

to optimize system performance by specifying the number of 

pages which each program may maintain in main memory in a 

way that keeps the number of page transfers per program 

relatively small while allowing the degree of multiprogram- 

ming to be relatively high.  This optimization problem, 

which will be referred to as page traffic balancing, can be 

partially resolved with the aid of the central server model. 

Parametric Specification of Page Traffic Behavior 

Before approaching this problem it is necessary to have 

some way of specifying the relationship between the expected 

number of page transfers per program and the average number 

of pages each program is permitted to maintain in main memory. 
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Note that the degree of multIprogramming is equal to the 

total number of pages of main memory divided by the average 

number of pages each program is permitted to maintain in 

main memory.  Assuming the total number of pages of main 

memory is being held fixed, it is thus sufficient to express 

the relationship between the expected number of page trans- 

fers per program and the degree of multiprogramming of the 

system. 

Generally speaking, the expected number of page transfers 

per program increases as the degree of multiprogramming in- 

creases.  This increase is comparatively gradual at first, 

but then accelerates abruptly after the degree of multipro- 

gramming passes a certain critical threshold.  This abrupt 

acceleration is due to a phenomenon known as thrashing which 

was originally analyzed by Denning (30). 

Page traffic behavior is also affected by the page re- 

placement algorithm.  This algorithm determines which page to 

remove from main memory at times when it is necessary to make 

room for a new page.  A good page replacement algorithm will 

remove a page which is not likely to be referenced again in 

the near future, thus reducing unnecessary page transfers. 

It is not the purpose of this discussion to present the 

details of various page replacement algorithms or an analysis 

of the thrashing phenomenon, but merely to characterize these 

factors in a relatively simple manner which preserves their 

essential features and also permits systematic variation of 

167 



key parameters. 

Figure 6-2 illustrates such a characterization.  The 

curves which appear in this figure correspond to instances 

of equation 6-6 for which 3=1, T=10 and A=0.5, 1.0 and 2.0 

pr-il A 
[_T-NJ F(N) = B-|_^J 6-6 

Equation 6-6 expresses the expected number of page transfers 

per program (i.e., F(N) )  as a function of the degree of 

multiprogramming (i.e., N)  and three parameters: A, B and T. 

The parameter T represents the degree of multiprogramming at 

which the thrashing phenomenon causes the expected number of 

page transfers per program to become virtually infinite. 

Since thrashing continues if N is Increased beyond T, it 

will be assumed that equation 6-6 defines F(N) only for the 

case in which 1=N<T .  For N=T F(N) is assumed to be Infinite, 

Next note that F(N) = B when N = 1.  Hence B is the 

expected number of page transfers per program when only one 

program is maintained in main memory at any time.  Assuming 

that main memory is large enough to accomodate entire pro- 

grams in this case (i.e., no overlays are necessary), B is 

then equal to the expected number of pages referenced per 

program.  It is assumed in Figure 6-2 that B = 1, but by 

simply reinterpreting the scale along the vertical axis it 

is possible to represent any other value of B. 

The exponent A in equation 6-6 is intended to represent 

the relative efficiency of various page replacement algorithms 
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If N is held constant  then F(N) will decrease as A decreases. 

This corresponds to the fact that more efficient page replace- 

ment algorithms will result in a smaller expected number of 

page transfers per program when all other factors are held 

fixed. 

No particular correspondence between specific values of 

A and actual page replacement algorithms is intended, although 

the value of A associated with relatively inefficient al- 

gorithms such as FIFO will be greater than the value associ- 

ated with more efficient algorithms such as LRU.  It is 

assumed that A is restricted to positive values (i.e., A>0). 

Hence the thrashing effect will always cause the expected 

number of page transfers per program to go to Infinity as N 

approaches T.  This corresponds to the fact that thrashing 

will occur in any system in which main memory is over- 

committed, regardless of the page replacement algorithm used. 

However, Figure 6-2 illustrates that inefficient page re- 

placement algorithms cause thrashing to become a serious 

problem at significantly smaller values of N. 

Relation Between Page Traffic Behavior and Network Parameters 

Assume that the three parameters in equation 6-6  have 

all been specified, and suppose that it is desired to opti- 

mize system performance with respect to N.  To treat this 

problem using the central server model of multiprogramming, 
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st let the page transfer processor correspond to the 1— PPU in 

the network.  In addition, assume that the following para- 

meters have been specified: 

r . = total expected number of processing requests directed 

to the j— PPU per program (j=2,3 L) 

s. = expected amount of processing time for a request 

directed to the j— PPU (j=l,2 L) 

C = total expected amount of CFU processing time per program 

Note that these parameters closely correspond to those 

used in the buffer size determination problem, the major 

difference being that s. is independent of N In the case of 

page traffic balancing since the time to transfer a page to 

or from main memory is not assumed to be dependent upon the 

degree of multiprogramming of the system. Hence u. = 1/s . 

for j=l as well as for j=2,3,...,L . 

The other network parameters, which do depend on N, may 

be determined as follows.  The total expected number of PPU 
L 

processing requests per program is F(N) + >  r, .  Thus 
j=2  J 

L 
1/p  - 1 = F(M) + ^_ r,    by equation 4-4 . 

° j=2  J 

L 
Hence p = l/( 1+F(N )+!>" r .) 

$2  J 

Paralleling  the argument presented in the buffer size de- 

termination problem, 

P/P0 = rj for j=2,3 L 
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so that p^ = rjPo = r j/( 1+F(N )+y~ rj 

Also Pl^Po =  F^N^ 

L 
which implies  p.. = P(N)p = F(N)/( l+F(N)+y~" r.) 

0 J=2  J 

Finally l/(uQpo) = C 

Thus u = l/(p C) = (l+F(N)+>  r,)/C 
° J=2  J 

Optimization Equations 

Summarizing the results of the previous section, the 

page traffic balancing problem is the problem of optimizing 

>     ]J <p.iV*.i>nJ 
L      * 
5~n .&N-1 
j=l J 

A u p^ = u p o cr o T 0*0 

L 

j 
with respect  to N 

L J_1 

5~n,fcN 
.1=1   J 

L 
where p    =  l/(l+F(N)+5      r .) 

° j=2     J 

L 
Pl   =  F(N)/(1+F(N)+2Z rJ 1 j=2     J 

L 
p, = r,/(l+F(N)+2Z rJ for  J=2.3 L j       a j_2    J 

L 
u    =   (1+F(N)+^Z rJ/C 0 1=2      J 

u    =  1/s, for   j=l,2,3,...,L 
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It Is assumed that N is permitted to vary continuously in the 

interval [l,T) and that non-integral values of N are evaluated 

by linear interpolation as in the case of buffer size deter- 

mination. 

Another similarity with the case of buffer size deter- 

mination is that many of the dependencies on N cancel each 

other out in the expression for A u p .  For example, with r o o o 

X. again defined as p ,u /u., it follows that for J=2,3t...»L 

X, = 

L 
r./(l+F(N)+y~ r.) 

J=2  JJ 3 
(1+F(N)+ 

J=2 
r)/C ] 

1/s 

= Tf/C 

X1 = P1uQ/u1 

[ F(N)/(l+F(N)+^~" r.) 3=2  JJ L 
(l+F(N)+>_ r,)/C 

J=2 J 
:] 

1/s. 

= F(N)Sl/C 

Finally, 

up = 
0*0 

(l+F(N)+5~ r,)/C 
j=2  J 

1/(1+F(N)+^ r .) 
J=2 3 

l/c 
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Since uQpo is independent of N, this factor can be omitted 

from the original optimization problem so that the problem 

becomes one of optimizing A - rather than A u p  - with e °  o o 0*0 
respect to M. 

Thus the page traffic balancing problem is the problem 

of optimizing 

L 
5~     "TTOC^J 
^-  J=l   J 

L 
SZn>N-l 
3=1 J    

n.6N 
j=l J 

with respect to N 

where    X± =  F(N)s1/C 

X, = r.s./C        for j=2,3,...,L 

F<N> =B-[f^]A 

and non-integral values of N are evaluated 

by linear interpolation 

Analysis 

Assuming that the program population and the size of 

main memory are held constant, the two most obvious ways 
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to improve the performance of a paged computer system are to 

improve the page replacement algorithm (i.e.,  decrease A) 

or to increase the speed of the page transfer processor 

(i.e., decrease s1).  In order to determine the relationship 

between these two factors, u1   (u..=l/s.,)  was allowed to vary 

from 0.1 to 4.0 while A was set to either 0.5,   1-0 or 2.0 . 

For each value of u. and A the optimal value of N was ob- 

tained by a numerical search procedure  and the associated 

value of A  was computed.  The other parameters In the 

model were:  B=1000, T=10; r,=1000, s.=l, C=1000; L=4. 

The outcome of this optimization procedure is presented 

in Figure 6-3 •  As anticipated, optimal performance is im- 

proved both by decreasing A and by Increasing u1.  It is in- 

teresting to note that decreasing A from 2.0 to 0.5 improves 

performance from .137 to .167 (i.e., by 29,^)  when u1 = 0.2 , 

while the same change in A improves performance from .490 

to .659 (i.e., by 34$)  when u., = 2.0 .  Thus the benefits 

of using a better page replacement algorithm may be more 

significant for fast page transfer processors than for slow 

page transfer processors.  This illustrates the point that 

choice of page replacement algorithm may be more - rather 

than less - critical as the speed of the page transfer pro- 

cessor increases. 

This section illustrates one way in which central server 

models can be used to analyze the problem of page traffic 

balancing.  There is obviously much additional work to be 
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done in this area, particularly in determining the nature of 

the function F(N).  Note that F(N) could be determined em- 

pirically for different page replacement algorithms by direct 

measurement of actual systems.  These empirical results could 

then be combined with the optimization equations of this 

section to explore the behavior of paged systems in consider- 

ably greater depth. 
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CHAPTER 7: EXTENSIONS 

INTRODUCTION 

The central server model of Figure 4-3 incorporates a 

set of general features which are common to virtually all 

large scale multiprogramming systems.  However, when con- 

structing models of particular systems It is sometimes desir- 

able to extend the model by adding certain special features 

such as multiple CPU's, interactive time-sharing terminals 

and sector scheduled drums.  It may also be desirable to 

examine the consequences of random fluctuations in the degree 

of multiprogramming (i.e., the value of N).  This chapter 

discusses a number of relatively simple extensions which can 

be made to the basic central server model in order to incor- 

porate features of this type. 

Some of the extensions presented in this chapter are 

rather obvious, given the basic model of Figure 4-3 and the 

solution techniques developed by Jackson (48) and Gordon and 

Newell (41).  The reason for Including these extensions 

along with the others is to provide a compact point of refer- 

ence for future work in this area.  In addition the entire 

set of extensions serves to illustrate the generality and 

flexibility of the original central server model. 
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NEW  PROCESSOR TYPES 

Multiple Processors and Channels 

In the diagram of Figure 4-3 each service facility 

(I.e., circle) Is understood to represent an Individual pro- 

cessor or server.  Suppose Instead that, for J«0,l,2,...,L , 

the J— service facility represents a set of ra. Identical 

servers which can operate In parallel.  For example, there 

may be a number of CPU's at the central service facility or 

a number of data channels associated with a set of disk 

drives at one of the peripheral service facilities.  Thus 

each m. Is a positive integer which may In some cases be 

equal to one. 

To obtain the steady state distribution for such a net- 

work assume first that the time required to complete a ser- 

vice request at one of the servers In the J— service facil- 

ity Is an exponentially distributed random variable with 

mean 1/u..  It then follows Immediately from equation B-15 

of Appendix B that the steady state distribution Is given as 

1        1      TT   (pjVuJ)nj 
p(rvni nL> • GTNT on .,     ijnj— 7'1 

o    o     J«l J     J 

kl       If k* m. 

A.(k)     = * 7-2 

m.t(m.)k"mJ       If    k>m. 
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Equation 7-1 represents an entirely straightforward 

application of the solution techniques developed by Jackson 

and Gordon and Newell.  Computational algorithms for evalu- 

ating equation 7-1 appear in the second half of Chapter 5« 

Dedicated Peripheral Processors 

Dedicated peripheral processors correspond to devices 

such as the interactive terminals of a time-sharing system. 

As in the case of multiple processors and channels, it is 

assumed that all the dedicated peripheral processors of a 

particular type have identical service time distributions 

and can operate in parallel with one another.  However, it 

is assumed that there is a dedicated processor of each type 

for each program in the system.  Thus there are never any 

queueing delays associated with service requests for dedicated 

peripheral processors. 

Prom a mathematical standpoint a set of dedicated 

peripheral processors corresponds to a service facility con- 

taining a sufficiently large number of parallel servers to 

guarantee that no service request ever has to wait in a 

queue.  Por a closed network of N circulating customers, 

N parallel servers will obviously suffice.  Hence the assump- 

tion that the 1— service facility in a central server net- 

work corresponds to a set of dedicated peripheral servers 

Is equivalent to the assumption that the steady state distri- 

bution of the network is given by equation 7-1 and that 
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m. = N in equation 7-2.  Note that m,» N  implies 

A^k) - k!  for all k 7-3 

It is convenient to use equation 7-3 to characterize dedi- 

cated peripheral processors since this equation contains no 

explicit reference to the value of m. . 

Even though dedicated peripheral processors and multiple 

processors and channels can be treated by the same mathe- 

matical techniques, they are not conceptually identical. 

This follows from the observation that multiple processors 

and channels are regarded as functionally equivalent, which 

is to say that each one can service a processing request 

from any program In the system.  On the other hand, each 

dedicated peripheral processor is restricted to serving the 

processing requests of a particular program.  The two con- 

cepts are mathematically equivalent because it makes no 

difference which processor is serving which request as long 

as all requests can be served in parallel. 

Queue Dependent Processors 

The discussion of rotating storage service disciplines 

presented in Chapter 2 indicates that it is possible to im- 

prove the performance of devices such as disks and drums by 

employing scheduling algorithms such as SATF (i.e., shortest 

access time first) and SSTF (i.e., shortest seek time first). 

Under these scheduling algorithms the expected service time 
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per processing request becomes a function of the number of 

requests waiting for service at the facility.  In other 

words, service times become queue dependent. 

Suppose that the 1— service facility In a central 

server network consists of a queue dependent processor whose 

service time Is an exponentially distributed random variable 

with mean  l/(u.'a.(n.))  where n. Is the number of programs 

at the facility and a.(n.) Is an arbitrary positive valued 

function.  It then follows from equation B-15 that the steady 

state distribution for this network Is given by equation 7-1 

with A.(k) defined as follows: 

If k = 0 

Ai(k) = ) 7-4 

' a.(n)    if k yO 
n=l  1 

Smith (77) presents an analysis technique which can be 

used to determine the function a.(k) for the case In which 

the 1— service facility Is a drum employing an SATF sched- 

uling algorithm.  The references In the section of Chapter 2 

dealing with rotating storage service disciplines are also 

relevant to this problem. 
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Non-Exponential Dedicated Peripheral Processors 

Suppose that the J— service facility In a central 

server network consists of a set of dedicated peripheral 

processors whose service time density function Is 

h-uj^e""1^.!* + (l-h)-u, 2*'**^ 7-5 

Expression 7-5 represents a hyperexponentlal density func- 

tion of the second degree.  It Is assumed that 0 <h <1 

mA  UJ.l *  UJ.2' 

Expression 7-5 Implies that the amount of service time 

per processing request for the J— service facility Is distri- 

buted as u. 1e~
uJ,l  with probability h and distributed as 

u. 2e~
uJ,2  with probability 1-h.  Suppose that p. Is the 

probability that a program will generate a processing request 

for the J— service facility after completing a CPU process- 

lng request.  The J— service facility may then be concep- 

tually divided Into a pair of service facilities as Illus- 

trated in Figure 7-1. 

Partitioning the ;p— service facility in this way 

creates a new central server network with exponential service 

times at all points and a state description vector of the 

form (n .n.,... ,n, .,n . j»n. 2»n <+i »• • • »nL^ *  Tlle steady 

•The material presented in this section was suggested by 
C.G. Moore and S. Klmbleton of the University of Michigan. 
Some of this material appears In Moore's Ph.D. thesis (62). 
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state distribution for this network will have the general 

form given in equation 7-1 and can he Immediately written 

down in any particular case.  Since each state (n ,n.,,..., 

n. ltn. 2»«««t
nr) *n tne conceptually modified network maps 

into the state (n ,n. n. i+ni 2*''' *nl)   ln the °rl6lnal 

network, the steady state distribution for the original 

network is given by 

P(nQ,n^,...,n,,...tn^) = ^>   P(n ,n^,...,n. .,n.-n. .t...n.) 

7-6 

nJ.l=0 

Note that the same solution technique can be used for hyper- 

exponential distributions of arbitrary degree. 

To illustrate another method of constructing non- 

exponential service times, suppose that the J— service 

facility in a central server network consists of a set of 

dedicated peripheral processors whose service times are the 

sum of k exponentially distributed random variables with 

means l/u. -, l/u. 2» •••• Vu. j. •  The J— service facil- 

ity can then be conceptually divided into k individual expo- 

nential service facilities operating in series as Illustrated 

In Figure 7-2.  While the network in Figure 7-2 does not 

entirely conform to the specifications of the central server 

model, its steady state distribution can still be obtained 

rather easily using the methods of Appendix B. 

Note first that the matrix F of branching probabilities 

has the following form: 
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The  equation  y s yp then becomes 

yo " Poyo +  yl +  y2 +   '••  +  yj-l + yJ.k +  *j+i +   ••'  + yL 

yl » Plyo 

y2 " P2yo 

yj-l " Pj-lyc 

yJ.l  " PJyo 

7J.2  =  yJ.l 

7J.3 =  yJ,2 

yJ.k "  yJ.k-l 

>1 " pj+lyo 

PLyo 

It Is thus clear that the vector 

y " (yo'plyo'p2yo pJ-lVpjyo pJyo'pJ+lyo pLyo) 

k components 

satisfies the equation y a yP for any value of y , and in 

particular for yQ = u . The steady state distribution for 

the conceptually modified network can then be immediately 
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obtained from equation B-15.  The steady state distribution 

for the original network is then 

^no,nl*"" *,n 1* * *" ,nL^ m /* P(n ,...,n. .,...,n, ir»-''inT) 

z 
1=1 

nJ.i=nJ 7-7 

The method used to obtain equations 7-6 and 7-7 can 

obviously be extended to include arbitrary parallel and 

series combinations of exponential components, although the 

solution of the equation y = yP may then no longer be rou- 

tine.  Unfortunately there appears to be no easy way to ex- 

tend this technique to shared (i.e., non-dedicated) service 

facilities of the type used in the original central server 

model.  The problem is that such service facilities create 

additional queuelng delays which make it difficult to char- 

acterize service times as simple combinations of parallel 

and series exponential delays.  However it is still possible 

to write down the complete set of equilibrium equations and 

to attempt to solve them directly for specific cases. 

* 
Hyperexponentlal Central Processors with Processor Sharing 

The notion of processor sharing was discussed at some 

length In the section of Chapter 2 dealing with quantum con- 

trolled service disciplines.  In this section processor 

•The material presented in this section was suggested by 
F. Baskett of the University of Texas. 
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sharing will simply be regarded as the limit of a round robin 

service discipline in which the quantum size has shrunk to 

zero. Thus, if there are n programs present at the CPU, each 

will receive 1/n of the CPU's processing capacity. 

Assume next that the amount of (full capacity) service 

time per processing request is a random variable with hyper- 

exponential density function of the form 

h.u o ^e^o.l* +  (l-h)-u 0^e'not2
t 

, 1 O , £• 

Applying the technique of Figure 7-1, the CPU may then be 

conceptually divided into a pair of parallel exponential 

service facilities as illustrated in Figure 7-3.  However 

Figure 7-3 cannot be considered as an exact analog of Figure 

7-1 because it is assumed in Figure 7-3 that there is only 

a single CPU, and that this CPU is operating under a pro- 

cessor sharing service discipline.  Thus the assumption of 

a service facility composed of dedicated processors is not 

valid in this case. 

Continuing with the analysis, suppose that there are 

n 1 programs present at the upper CPU service facility and Of 1 

n 9 programs present at the lower CPU service facility. 

Each program thus receives l/(n -,+n 0)     of the CPU's total 

capacity.  It then follows that the rate of departure from 
n . 

the upper facility is -—2^  • UQ 1  and the rate of de- 
o,l o,2    * 

parture from the lower facility is ^ UQ 2 . 
o,l o,2  • 
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Note that the processing rate of each service facility 

is not solely a function of the number of programs present 

at that facility.  Thus it is not possible to use the solu- 

tion techniques developed by Jackson and by Gordon and Newell 

in this case.  It is of course still possible to write down 

the complete set of equilibrium equations and attempt to 

solve them directly.  Baskett ( 8 ) has successfully carried 

out such an analysis for the case in which the only other 

component in the network is a set of dedicated exponential 
* 

peripheral processors.  An extension of Baskett*s work to 

the full central server model would be of considerable 

interest. 

•This corresponds to the finite source Poisson arrivel pro- 
cess classified as type M_ in Chapter 2. 
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VARIATIONS IN THE DEGREE OF MULTIPROGRAMMING 

A Specialized Time-Sharing Model 

There are a number of ways In which the central server 

model can be extended to Include random fluctuations In the 

degree of multiprogramming (i.e., the value of N).  One 

possible approach Is related to the observation that such 

fluctuations are almost always present In systems with Inter- 

active time-sharing terminals since programs which are wait- 

ing for responses from these terminals are not normally 

maintained in main memory.  Thus the true level of multi- 

programming In such systems is equal to N minus the number 

of programs waiting for terminal I/O. 

Interactive time-sharing terminals have already been 

discussed in this chapter in the section dealing with dedi- 

cated peripheral processors. However it is necessary to 

extend the central server model still further to explicitly 

represent the fact that programs lose and then regain their 

main memory allocation as they go into and out of terminal 

wait states. 

One simple way of representing this phenomenon is to 

assume that the system contains a PPU which will be called 

an overlay processor.  Basically an overlay processor saves 

regions of main memory on auxiliary storage and then loads 

program and data segments into these regions.  It Is assumed 

that the overlay processor functions during the normal course 
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of program operation as well as at times when programs 

attempt to regain their main memory allocation after a ter- 

minal wait. Thus the overlay processor is similar in many 

respects to a page replacement processor. 

Figure 7-^ represents a system containing an overlay 

processor and a set of interactive time-sharing terminals. 

Note that programs completing terminal I/O must obtain 

service from the overlay processor before proceeding to the 

CPU queue.  In addition programs make requests for service 

from the overlay processor during their normal course of 

operation with probability PT_I« 

The steady state distribution for the network in Figure 

7-4- can be readily obtained using the solution technique 

discussed in Appendix B. Note first that the matrix P of 

branching probabilities has the following form: 

P = 

0 Pl p2 

10  0 

10  0 

10 0 

0  0  0 

PL-1 PL 

0   0 

0   0 

0 

1 

0 

0 

The equation y = yP then becomes 
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yo • yl + y2 + * *' + yL-l 

yl • Plyo 

y2 " P2yo 

yL-l • PL-l
yo + PL 

yL e PLyo 

Thus the vector y = (yo.Pi7o.P27o (PL+l
+PL)yo'pLyo) 

satisfies the equation y_ = y_P for any value of y , and in 

particular for y • u . The steady state distribution for 

the network can then be immediately obtained from equation 

B-15. 

Note that Figure 7-4 contains no NEW PROGRAM path. 

This is to emphasize the fact that, while the original 

central server model is essentially a batch processing model, 

the model in Figure 7-4 is more properly regarded as a time- 

sharing model.  Thus it Is no longer sufficient to use the 

number of programs processed per unit time as the sole 

measure of system performance.  Instead it is necessary to 

introduce measures which take response time and total number 

of active terminals into account.  One possible measure is 

the maximum number of active terminals which can be supported 

at a given level of responsiveness.  However this measure 

may not prove satisfactory for all applications, and so 

196 



additional work may be necessary before the model in Figure 

7-4 can be used in conjunction with various optimization 

procedures. 

An Open Network Model 

An entirely different approach to the problem of fluc- 

tuations in the degree of multiprogramming Is to assume that 

new programs arrive at the system in a random fashion from 

an unspecified external source and that programs disappear 

entirely from the system after they have completed their 

processing requirements. 

Figure 7-5 illustrates such a system.  It is assumed 

that the external arrivals are generated by a Poisson arrival 

process with mean rate u
x'aT(N)  where a is an arbitrary 

non-negative function of N, the total number of programs in 

the system at any given time.  In addition it is assumed 

that the probability that a program will exit from the sys- 

tem after completing a CPU processing request is equal to 

p .  Note that Figure 7-5 can be regarded as a standard 

central server network in which the NEW PROGRAM path has 

been cut open to permit external arrivals and departures. 

Since Figure 7-5 is not a closed network Its steady 

state distribution cannot be obtained using the method of 

Gordon and Newell.  However Jackson's more general solution 

technique Is clearly applicable.  First note that the matrix 

P of branching probabilities has the following form: 
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p = 

0 Pl P2 PL 

1 0 0 0 

1 0 0 0 

Next note that arriving programs all proceed with probability 

one to the central server.  Thus the vector which character- 

izes the branching probabilities for programs arriving from 

external sources is 

e =  (1,0,0 0) 

To obtain the steady state distribution for the network 

it is necessary to solve the equation y = e + y P for the 

vector y.  Broken down into individual components, this 

equation is 

y0 = i + 71 + y2 + . •. + yL 

yi • Plyo 

y2 • P2yo 

yL = Pl/o 

Thus the solution vector is 

7    = (1/P0. Pi/P0. P2/P0» •••• PL
/po) 
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It is now necessary to define auxiliary functions 

similar to those defined in Appendix B. 

1  if n - 0 

Let Ax(n) 

n 
" a(k)  if n >0 

k»i 

Assume that the values of A,(n) for 3=0,1,2,... ,L are 

defined as in equation B-ll.  Finally let 

N • n + n- + np + ... + n- 

It then follows from the work of Jackson (/j-l , p. 138) that 

the steady state distribution for the network in Figure 7-5 

is given by 

1      N        (1/u
0p0)n° TT (pj/ujp0>nJ 

where the normalizing constant G is defined as 

00 

I 
N=0 

<VN VN) y 
(l/uQP?)no f\ (Pj/u3P?)nJ 

J-1 A   (n   ) o    o "I77r7 
J-0 

nrN 

Since the total amount of main memory Is limited, it 

becomes increasingly unlikely that new programs will be 

admitted to the system as the number of programs already in 

the system grows larger. The values of ax(N) can be specl- 
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fled in a way that reflects this fact.  If there exists 

some upper bound on N beyond which no programs can be ad- 

mitted (i.e., a (N) • 0 for N>M), then the system can 

be converted to a closed system with M circulating customers 

as indicated in Figure 7-6. The processing rate of the x— 

server In Figure 7-6 is assumed to be u a (M-n )  where n 

is the number of customers present at the x— server and a 

is the original external arrival rate function.  Note that 

the value of M-n in Figure 7-6 corresponds to the value of 

N In Figure 7-5- 
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CHAPTER 8: THE •ODEL IN PERSPECTIVE 

RELATION TO OTHER WORK 

Introduction 

The analytic network models discussed In the final 

section of Chapter 2 bear very little resemblance to the 

central server model presented In this thesis.  However 

Smith's (76) numerical queuelng network model does fall 

within the central server framework.  In addition, both 

Arden and Boettner ( 6 ) and Fenlchel and Grossman (33) have 

discussed certain non-queueing theoretic aspects of central 

server networks.  Thus, despite the almost total lack of 

analytic studies of complex queuelng network models, the 

general schematic framework of the central server model Is 

not entirely without precedent. 

In light of these remarks It Is Interesting and some- 

what surprising to note that four completely Independent 

analyses of the central server model have been published In 

the past few months.  The first of these Is contained in a 

Japanese language article by Tanaka (79) which appeared in 

October 1970.  Analyses by Arora and Gallo ( 7 ) and Buzen 

(12) then appeared concurrently during the first week of 

April 1971 in conjunction with the SIGOPS Workshop of System 

Performance Bvaluatlon.   Finally, a Ph.D dissertation deal- 

•Thls Workshop was held at Harvard University on April 5-7, 
1971.  Proceedings may be obtained through the ACM. 
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lng with the central server model was presented by Moore 

(62) later in April 1971.  It should be noted that ^oore 

also discussed his model during the 38  National Operations 

Research Society of America Meeting held in October 1970. 

However no conference proceedings were published. 

The relationship between the work presented in this 

thesis and the work of Tanaka. Arora and Gallo, and Moore 

will now be examined on an individual basis.  Following this 

a brief account of the material that is unique to this 

thesis alone will be presented. 

The Work of C.G. Moore 

The original motivation for Moore's model was provided 

by the University of Michigan Terminal System (MTS).  Sinoe 

MTS is primarily a time-sharing system  the model includes 

dedicated interactive terminals of the type discussed in 

Chapter 7. 

Moore's derivation of the steady state distribution is 

based on the work of Gordon and Newell (4l). After obtain- 

ing the steady state distribution Moore uses the results of 

a series of MTS measurements to assign numerical values to 

model parameters. The model Is then used to make behavior 

predictions for MTS. Moore found a reasonable level of 

correlation between predicted bahavior and actual behavior, 

thus validating the model for this particular case. 
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From the point of view of this dissertation the most 

significant aspect of Moore's work Is that It demonstrates 

that the assumptions which underlie the central server model 

are sufficiently realistic to permit the model to be of 

practical value In predicting the performance of actual 

multiprogramming systems. 

The Work of S.R. Arora and A. Gallo 

Arora and Gallo's development of the central server 

model grew out of consideration of an airline reservation 

system.  As a result the peripheral servers In their model 

are Identified with levels within a memory hierarchy rather 

than more general peripheral processors.  After presenting 

the model in this somewhat specialized context, Arora and 

Gallo proceed to derive the steady state distribution with- 

out utilizing the results of Jackson (48) or Gordon and 

Newell (^1).  They then use the performance predictions of 

the model to evaluate alternative system configurations, 

using actual cost figures and functional characteristics to 

characterize the hardware and using empirically obtained 

program behavior statistics to characterize the processing 

load. 

In a separate section of their paper Arora and Gallo 

consider the problem of optimal loading of program and data 

segments into the levels of the memory hierarchy under the 

assumption that the size of the various program and data 
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segments and the capacity of the levels In the hierarchy are 

given as parameters.  Since the loading strategy determines 

the relative frequency with which the levels in the hierarchy 

will be accessed, this problem is related to the peripheral 

processor utilization problem analyzed in Chapter 6.  How- 

ever the objective function that Arora and Gallo attempt to 

optimize does not take into account the queueing delays in 

the system.  Instead it is simply a linear function of the 

access times and transfer rates of the non-executable memory 

levels plus the cycle times of the executable memory levels. 

The specialized form of the objective function reduces the 

optimization problem to a problem in linear programming 

which is then solved by Vogel's method. 

Arora and Gallo*s choice of objective function is some- 

what surprising in light of the fact that the overall measure 

of performance they use to evaluate alternative system con- 

figurations does indeed take queueing delays into account. 

Thus in the extreme case where the fastest level of non- 

executable memory has virtually unlimited capacity, Arora 

and Gallo's optimal loading strategy will place all non- 

direotly executable program and data segments into that level 

even though this will almost certainly result in excessive 

queueing delays and a sub-optimal level of performance 

(assuming that the level of performance Is determined by 

the measure developed in the other part of the paper).  This 

difficulty is avoided in the analysis of Chapter 6 since 
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there the objective function and the measure of system per- 

formance are one in the same. 

The Work of H. Tanaka 

Tanaka's model is similar to Moore's in that it is 

oriented towards time-sharing systems.  Hence this model 

also includes dedicated interactive terminals of the type 

discussed in Chapter ?.  The major goal of this paper is 

the derivation of the steady state distribution and related 

expressions such as queueing delays and overall response 

time.  No attempt is made to apply the model to theoretical 

problems of the type presented in Chapter 6 or to validate 

the model by consideration of empirical data. 

Tanaka's derivation of the steady state distribution 

for central server networks having an arbitrary number of 

parallel servers at each service facility was carried out 

from first principles without utilizing the results of 

Jackson or Gordon and Newell.  This represents a significant 

accomplishment even though it is possible to derive this 

distribution in a simpler manner by making use of these 

related results. 

New Material 

This thesis treats a number of topics which were not 

considered by the previous authors.  For example  the Con- 

servation laws (I.e., equations 5-6 and 5-8) and the fact 

207 



that the the most highly saturated server has the longest 

expected queue (which follows from equation 5-10) represent 

new results.  In addition the three theoretical problems 

treated in Chapter 6 have not been analyzed elsewhere, 

although Arora and Gallo have considered the problem of 

optimal peripheral processor utilization in a different 

context. 

Certain technical points such as the use of the NEW 

PROGRAM path to represent program terminations are also 

new.  Finally, the computational algorithms presented in 

the second half of Chapter 5 are new and should be of con- 

siderable value in the analysis of any queueing network 

model whose steady state distribution can be derived using 

the methods of Jackson and Gordon and Newell.  The signi- 

ficance of these algorithms thus extends well beyond the 

scope of the central server model itself. 
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SUGGESTIONS FOR FURTHER RESEARCH 

A number of the earlier chapters of this thesis contain 

explicit references to promising areas for future research. 

For example, several problems associated with quantum con- 

trolled service disciplines are discussed on pages 3^ - 36 

of Chapter 2, the problem of limited queue size with Induced 

blocking is mentioned on page 75 of Chapter 3. and the need 

for additional research on the problem of page traffic 

balancing is cited on page 177 of Chapter 6.  In addition, 

the extensions to the basic model discussed In Chapter 7 can 

be used to construct a host of models which closely resemble 

particular systems of interest. 

With regard to this last point it should be noted that 

the construction of models of particular systems or classes 

of systems does not in and of itself constitute a research 

activity.  For example, the construction of a mathematical 

model for the purpose of predicting the behavior of an actual 

or proposed system generally falls under the heading of 

engineering.  This is especially true if the mathematical 

techniques used to construct the model are highly standardized 

and if the performance predictions are being used to guide 

system design.  Since the purpose of this section Is to dis- 

cuss prospective research problems, such engineering activi- 

ties will not be considered further. 
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Research activities are primarily concerned with inves- 

tigating the underlying factors which influence the behavior 

of all systems of a given type.  A number of interesting 

research problems can be formulated within the framework of 

the central server model.  One, which in some ways resembles 

the buffer size determination problem of Chapter 6, will be 

called the program organization problem. The problem is 

simple to state.  Assume that the total net amount of pro- 

cessing time per program is specified for each processor in 

a system. Then, taking overhead and the effects of buffer 

size on degree of multiprogramming into account, determine 

how this total processing load should be organized in order 

to optimize system performance.  In other words, specify the 

values of the model parameters (u ,...,uT,p ,...,pr and N) 
O        Li  O        Li 

which optimize overall performance, subject to the constraint 

that the net amount of processing time per program for each 

processor is constant.  The solution to this problem may 

provide valuable insight into the relationship between pro- 

gram organization and system architecture under a variety of 

processing loads. 

A somewhat different problem has its initial motivation 

in real-time system design.  Suppose a particular routine is 

executed periodically in response to an external interrupt, 

and assume that the time constraints associated with the 

interrupt are sufficiently lax so that the routine can be 

maintained in secondary storage if desired. Then, given the 
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average time between interrupts, the size of the routine, 

the time required to access it from secondary storage, and 

the utilization factor for the secondary storage access 

channel, specify the conditions under which it is preferable 

for the routine to reside in main memory and the conditions 

under which it is preferable for the routine to reside in 

secondary storage.  This problem, which will be called the 

residency problem, has Implications for the management of 

monitor segments and utility routines in conventional multi- 

programming systems in addition to its original application 

to real-time system design. 

Still another problem is that of optimizing system per- 

formance by altering the external processing load (i.e., the 

Job mix) in various ways.  For example, It is possible to 

alter the external processing load by changing the relative 

percentages of compute bound and I/O bound Jobs, or by adding 

a real-time Job stream with certain processing characteristics, 

Since such modifications can affect the average amount of 

processing per program, it may no longer be possible to com- 

pare systems on the basis of number of programs processed 

per unit time.  Consequently, solutions to problems of this 

type may require the development of new measures of system 

performance. 

On a more theoretical level, the effects of different 

processing time distributions, and especially the effect of 

changes in the variance of these distributions, should prove 
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interesting to explore.  The work of Baskett (8) which Is 

discussed on page 192 of Chapter 7 appears to be a promising 

start In this direction. 

In short, the prospects for future research In the area 

of queuelng network models In general and the central server 

model In particular appear quite promising.  It thus seems 

likely that the central server model and Its variants will 

become the objects of extensive examination in the coming 

years. 

212 



APPENDIX A: THE EXPONENTIAL DISTRIBUTION 

From a mathematical standpoint, an exponentially dis- 

tributed random variable is one whose probability density 

-at * function is ae    for some a>0.   Given this definition 

it is possible to derive a number of formal properties which 

exponentially distributed random variables satisfy.  However, 

to gain real insight into the nature of this distribution 

it is often more helpful to regard it as the limiting case 

of an intuitively simpler discrete time process. 

It is useful to have a specific example in mind when 

considering the exponential distribution in this light. 

Suppose then that in a queueing system each customer pre- 

sents the server with the following request: namely, to toss 

a particular coin once every s seconds until a "head" 

appears.  As soon as the first "head" is reached, the re- 

quest Is considered satisfied and the customer departs. 

Suppose the the coin is unbalanced so that the proba- 

bility of getting a "head" on any particular toss is h 

(0<h <1).  Then the probability that the server will re- 

quire s seconds (i.e., one toss) to complete a customer's 

request is equal to h, the probability that the server will 

require exactly 2s seconds (i.e., two tosses) to complete 

a customer's request is equal to (l-h)h, and in general the 

•Equivalently, an exponentially distributed random variable 
jumulatlve pro 
>r some a>0. 

may be defined as a random variable whose cumulative proba- 
bility distribution function is  l-e"a  fo] 
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probability that the server will require exactly ns seconds 

to complete a customer's request is equal to (l-h)n h. 

Note that these formulas are based on the assumption that 

the outcome of any particular coin toss is independent of 

all other coin tosses.  That is, each toss is an independent 

Bernoulli trial with probability of success equal to h. 

This assumption of independence has a number of inter- 

esting consequences.  First of all, it implies that regard- 

less of the amount of service a customer has already received, 

the probability that his service request will be completed 

on the next coin toss is always equal to h.  More generally, 

If a customer receiving service is observed at an arbitrary 

point in time, the probability that his service request will 

be completed on the n— coin toss after that point in time 

is equal to (1-h) " h. This is true regardless of the amount 

of service the customer had already received before he was 

observed.  Thus, the amount of service a customer has already 

received in no way affects the probabilities governing the 

the additional service he can expect to receive.  Probability 

distributions satisfying this condition are known as memory- 

less distributions.  The particular memoryless distribution 

cited in this example is known as the geometric distribution. 

When service times are geometrically distributed, a 

customer's service time is always some integral multiple of 

s, the basic coin tossing interval.  However, in most situ- 

ations of interest service times range over the entire 
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continuum of positive values.  It would thus be useful to 

define a service time distribution which ranges over this 

continuum and which also satisfies the memoryless property. 

One way such a distribution might be constructed is by 

starting with the original example and then letting s, the 

interval between tosses, approach zero.  This operation 

introduces certain complications since the expected number 

of coin tosses required to complete a customer's service is 

>  n(l-h)  h = 1/h ,  and so the expected amount of time 
n=l 
required to complete a customer's service request is s/h 

seconds. Thus, if s is allowed to approach zero, the ex- 

pected amount of time required to complete a customer's 

service will also approach zero, and in the limit each 

customer is served in zero time. 

This difficulty may be avoided if h is also required 

to approach zero as s does.  In particular, if the ratio s/h 

is held constant as s approaches zero, the expected amount 

of time to serve a customer will remain constant even though 

service times will. In the limit, range over the entire 

continuum of positive real values. This limiting process 

may be envisaged as one in which coin tosses become more 

and more frequent while the probability of getting a "head" 

on any particular toss becomes progressively less likely. 

To complete this discussion it is necessary to deter- 

mine the distribution of service times in this limiting 

case.  Suppose that the ratio s/h is kept equal to 1/a for 
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some value of a>0.  Now, for any value of t, the probability 

that a customer will require more than t seconds to complete 

his service request Is equal to the probability that he will 

require at least t/s tosses.  If |£/s] is defined as the 

largest Integer less than or equal to t/s, then this proba- 

bility can be expressed as: 

£1 (l-h)11"^ = (l-h)^i 
n=|/i+l m     (1_as)£/l      slnce    s/h m 1/a  , 

Thus, in the limit, the probability that a customer will re- 

quire more than t seconds of service is: 

lim (1-as)^  = lim (l-as)t/s * 
s-»o s*o 

t 
pirn (l-as)1/s~| 

=  (e-a)* 

= e"at 

Therefore, the probability that a customer's service time Is 

-at less than or equal to t is  1-e  , which is to say that ser- 

vice times are exponentially distributed. 

It is straightforward to verify that if service times 

are exponentially distributed, then the amount of service a 

•The equality of the two limits derives from the fact that 

(i-as)k'^' -  (1-as)    is bounded by as and hence can 

be made arbitrarily small.  To see this, note that: 

(l-as)^i - (l-as)t/s <  (l-as)^i - (l-as)^i+1 

= as (1-as )K/2i   from the power 
series expansions 

- as        whenever o < s <1/a 
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customer has already received in no way affects the proba- 

bilities governing the additional service he can expect to 

receive.  This fact should also be obvious from the pre- 

ceding discussion since, intuitively speaking, at each point 

in time the server may be thought of as making a decision as 

to whether to eject the customer or to continue serving him 

until the next point in time, and the probability that the 

server will decide to eject the customer at any particular 

point in time is constant. Independent of the amount of 

service the customer has already received.  The value of 

understanding the exponential distribution on this admittedly 

vague and intuitive level is that the nature of the memory- 

less property, which is so crucial in queuelng theory, 

becomes immediately apparent. 

As a final point, it Is worth noting that the geometric 

distribution is the only discrete distribution to satisfy 

the memoryless property and that the exponential distribu- 

tion is the only continuous distribution to do so.  Feller 

(32)  demonstrates these facts in Sections XIII.9 (p. 328) 

and XVII.6 (p. 458) respectively. 

•The probability that a customer will receive an additional 
v seconds or less of service, given that he has already re- 
ceived u seconds of service, is: 
fu+v       -at   ,. /        % \          ae         dt „-au         -a(u+v)                       „            „_            . Ju  e -  e 1     -av rv  „  -at   .«.  _     =     .  -     i_e =    \     ae dt 

oo -at  j j. -au J o foo -at   .. 
Ju       ae dt e 

which is the probability that a customer Just beginning ser- 
vice will receive a total of v seconds or less of service. 
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APPENDIX B:  A SOLUTION TECHNIQUE FOH 
MAHKOVIAN QUEUEING NETWORKS 

Simple Exponential Servers 

The purpose of this Appendix Is to review the solution 

techniques used by Jackson (^8)  and Gordon and Newell (41) 

to obtain steady state distributions for certain classes of 

queuelng networks.  This first section Illustrates the way 

in which steady state distributions can be obtained for net- 

works made up of simple exponential servers.  The solution 

technique is then extended to include queue dependent expo- 

nential servers in the second section of the Appendix. 

This analysis treats closed queuelng networks only. 

That is* it is assumed that a fixed number of customers 

circulate through the network at all times with no possi- 

bility of customers either entering or leaving.  Such net- 

works will be characterized as follows: 

L+l • the number of servers in the network, 

u. » the processing rate of the J— server for J=0,1,...,L 

(i.e., the service time at the j— server is an expo- 

nentially distributed random variable with mean 1/u.). 

3 
L 

p. . * the probability that a customer leaving the i— server 

will proceed to the J— server.  Clearly ^_ p, . » 1 
J»0  1J 

for i»0,l,...,L . 

N  • the number of customers circulating in the network. 
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Assume that it is desired to obtain 

P(n ,n1,...,nT) «» the steady state probability that there 
OX Xi 

are n. customers present at the J— server, 

Note that these probabilities are only de- 
L 

fined for cases in which 

0&n .±N. 
J-0 

n . = N and 

Before determining the steady state probabilities 

it is useful to define one auxiliary function.  Let 

e(nj) = 
if n.=0 

if  n,>0 

It is now possible to begin the analysis.  Note first 

that the rate of transition out of state (n (n1t...(nT) at OX       XJ 

equilibrium is 

Z_e(nj) Uj P(n0.ni nL) 

This formula expresses the fact that customers exit from 

state (n .n,f...fnT) through the J— server as long as there OX       Xi 

is at least one customer present at that server.  If no 

customers are present at the J— server, no transitions are 

possible and the factor e(n.) will set the corresponding 

terra in the summation equal to zero. 
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Next note that the rate of transition into state 

(n ,n-,...,nL)  at equilibrium is 

L   L 
>   >   e(n.) u, p.. P(n .n.,,... ,n. + l,... ,n,-l,... tnT ) 
i»0  J=0     Jiijoi     l        j       h 

This formula expresses the fact that transitions occur into 

state  (n ,n1t...,nT)  from state  (n ,n4»..•,n«+lt.... O   1 Li Oil 

n^-l,...,^)  whenever a customer completes service at the 

i— server and then proceeds to the J— server.  Since the 

1— server operates at rate u. and transitions from the i~ 

server to the J— server occur with probability !>**•   the 

rate of transition into state  (n ,n1#...,nL)  from state 

(n,n..,...,n.+l,...,n-l,...,nj.)  is equal to 

Ui ^U ^no,nl* * * * ,ni+*» * * • ,nl"^» *' * ,nL^ * 

This transition rate must be multiplied by e(n.) to 

account for the fact that no such transitions can ooour when 

n.«0 since state  (n .n.,... (n,+lt. •. fn.-lt... ,n. )  cannot 

exist in this case.  Multiplication by e(n.) is necessary 

because, even though state (n .n.,...tn-+lt...,n.-l,...,n.) 

may not logically exist, a formal value of the function 

P(n .Hj,...,n.+lt...tn .-1,....n^)  will always exist . 

•The funotlon P(nQ,nlt...,nL)  is given in equation B-8 . 

From a logical standpoint this funotlon is only defined for 
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Next note that when J»i the corresponding term In the 

summation Is 

e(n.) u. p.. P(n ,n-,... tn. ,... fn.) 

This term represents transitions from state (n (nlt...tn-.) 

to Itself which occur as a result of customers completing 

service at the 1— server and then Immediately returning 

to that server.  The multiplication by e(n.) accounts for 

the fact that such transitions can only occur If there is 

at least one customer present at the 1— server. 

Since the rate of transition out of any state is equal 

to the rate of transition into that state at equilibrium, 

the steady state probabilities must all satisfy the follow- 

ing equation: 

J=0 
e(nj \i.  P(nQ,nlt... ,nL) 

L  L 
>  >  e(nj u. Pn P(n »n1,...,n1+l,...,n1-l n.)   B-l 
1*0 J=0     JX1JOA       i j 

cases in which 0*n,£N and the n. sum to N. However, to sim- 
plify the formal manipulations of this section it is assumed 
that this function is defined for all values of n.. 
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A separation of variables technique can be used to obtain 

values of P(nQ,n1(...tnL) which stalsfy B-l.  Assume that 

1 L 

P(n .n- nL) - ± JT 
(xvJ k       B"2 

k=0 

where G Is a constant that will be specified later and the 

X^ are functions of the network parameters.  To determine 

the X,  note first that 

xl l L     n 
P(n0,n1,...,n1+1 

nj-1»•••»nL^ " X G Tl (Xk'k    B~3 

Substituting in B-l from B-2 and B-3, 

^ «<*j> U
J h j£t (vn* 

L       L X.   ,     L 
5Z ZI •(«,) u  Pii  x  G TT (V k 
1.0   J-0 J        1     1J     Aj  o ka:0       it 

1   L 

Dividing through by £     (X.) k and moving the results 
** k=0   K 

to one side. 
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L  L 
e(n.) u.   -  >  >  e(n.) u, p.. (X./X.) 

J   J      1=0 j=o    
J       J      J 

J-0 

Hence,    >  e(n.) 
J=0    J 

L L 
UJ - £j>i PiJ (W •  0    B-4 

If all the customers are present at the k— server, 

then e(n. ) will be equal to one and all the other e(n.) 

will be equal to zero.  In order to satisfy equation B-^ 

In this case, It Is thus necessary that 

L 
k    ^ ^ Plk (X^) « 0   B-5 u 

1=0 

Since It Is possible for all the customers to be present at 

any server In the network, equation B-5 must be satisfied 

for k=0,l L .  In addition, It Is obvious that equation 

B-4 will be satisfied for any state  (n .n.,...,^)  If 

equation B-5 is satisfied for k»0,l,...,L .  Thus equation 

B-5 represents a necessary and sufficient set of conditions 

for determining the X.. 

It Is possible to rewrite equation B-5 in a simpler 

form.  First define 

yk = ukXk       for kB°»1»—»L        B~6 
Equation B-5 then becomes 

L 
yk - 2Z 7t Plk 1=0 

Since this equality must hold for k»0,l,...,L ,  the vector 

y = (y^y^** • .yL)  must satisfy the eigenvector equation 
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y « yP B-7 

where P is the matrix (p.,) . 

Thus, assuming a real and non-negative solution to 

equation B-7 can be found, it follows from equations B-6 

and B-2 that the steady state distribution of customers in 

the network is 
1  L n p<Vni nL) • G JT < W k B-8 
k«0 

Note that no explicit reference has been made thus far 

to the number of customers in the network (i.e., N).   In 

fact the only part of the solution which depends on N is the 

constant G.  To express this dependency G will be written 

as G(N) for the remainder of this discussion. 

The constant G(N) is selected so that the sum of all 

the P(n ,n,,...,nL) will be equal to one.  Since any value 
L 

of P(n .n..,... ,nT ) for whioh > " n, • N represents a 
° X    X >0  J 

possible state of the system, it follows that 

G(N) = J>   TT" (yk/uk)
nk B-9 

k=0 * 

The derivation of equations B-8 and B-9 is essentially 

a restatement of Gordon and Newell'a  argument.  However the 

network description was slightly simplified by the assumption 

that the processing rate of each server is independent of 

the number of customers present at that server.  The next 
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section demonstrates the way In which the steady state distri- 

bution can be obtained when such dependencies are assumed to 

be present. 

Queue Dependent Servers 

The network description Is the same as In the previous 

section except that the processing rate of each server Is no 

longer a constant but Is Instead a function of the number of 

customers present at the server.  That Is, If there are k 

customers present at the J— server, then the time until the 

next service completion is assumed to be an exponentially 

distributed random variable with mean —ngfc    . 
J J 

In the previous section it was in effect assumed that 

a.(k)»l for J=0,1,...,L and fc-1,2 N .  It will now be 

assumed that the a. are arbitrary functions subject only to 

the constraint that a,(k)>0 for 3*0,1,...,L and k«l,2,...t 

N .   The equation which corresponds to B-l is then 

L 
ZZ e(nj)   *j<nj)   Uj Ptn^ nL) 

L      L 
]JT~~^>~   e(n.)  a.(n. + l) u.p. . P(n  ,n1,...,n1+l n.-l,...,nL) 
1=0   J=0 J11 IIJOJ. x j 

L 
e(n1)  a^n^  u^ p^ P(n0,n^t... tn, ,... ,tu ) B-10 

1=0 
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A steady state distribution which satisfies equation 

B-10 can also be obtained by a separation of variables tech- 

nique,  but in order to do so it is first necessary to make a 

variable transformation.     Begin by defining 

Aj(0)  - 1 

n 
A.(n)  • '     " a.(k)       for    n-l,2,...,N 

Then define 

B-ll 

Q(rVnl nL)  = P(,Vnl nL}  JTW 

Note that 

Q(n ,n1,...tnT) 
P(no,n1 nL) *  g—± ^ B-12 

TT A.(nJ 
J«0     J     J 

Also 

P(n  ,n-,... .n^+1,... ,n.-l,... ,n»_) 

a.(n.) 

a^Tn^+I)  Q(no'nl ni+1 "j"1'' * * ,nL) 

TTAAn J 

B-13 
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Substituting In B-10 from B-12 and B-13, 

J=0 
e(n.) a (n.) u. Qln^nj n^) 

J=0 W 

L  L 
>  >  e(n.) a,(n.) u.p, . Q(n .n.,...,n.+l, 
1=0 1=0    J   JJ   •»• J-J    OJ.      1 

,nrl. »nT ) 

JT A.(u ) 
J=0  J  J 

B-lif 

Multiplying through by    ' A.(u.)  reduces equation 
J=0  J  J 

B-14 to the same form as equation B-l except that all the 

P's are replaced by Q's and e(n.) is replaced everywhere by 

einj-a.lnj.  It is thus possible to proceed exactly as in 

the case of equation B-l and derive 

£_  e(nj) ajUj) [^ - glu, PlJ (X./XjjJ 

Since a.(N)>0 by hypothesis. It is thus possible to deduce 

uk - g ui Pij < W • 
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for k=o,l,...,L by the same argument that was used to deduce 

B-5 from B-4.     It then follows that 

1        L 

Q(no'nl nL) - GOT 2J <W  k 

where y =  ^Q*71 7L) 

Is the real and non-negative solution of the elgnevector 

equation     Z = Z'** 

Applying equation B-12, It then follows that 

L (yk/uk)
nk 

P(n°-ni ^-aferTT -^7 B-I5 

The normalizing constant G(N) Is clearly determined by the 

<T     L     < W"* 
equation      G(N)  •   \    j|      jjjfiT) B"16 

k=0 

tf*-* 
Equations B-15 and B-16 represent a minor generalization 

of the results obtained by Gordon and Newell.  Jackson's 

results, on the other hand, are considerably more general and 

Include these equations as a special case. 
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